你真的懂得大数据吗
我们总能听到大数据这个词,但是你真的了解大数据吗?也许有人会回答“是”,但是真正能够做到了解的人却屈指可数。大数据究竟有哪些深奥的东西令人难以理解呢?
大数据之所以深奥难懂,唯一一点是因为:我们作为一个技术群体,并没有完全准备好去利用和管理大数据。也许你会说:“我们准备好了。”但事实上我们没有,原因如下:世界上百分之九十的数据都是在过去的两年里产生的,这使我们有些措手不及。每天都有大量的新数据从社交网站、工业传感器、卫星、手机、照片、文件以及其它地方产生。我们的数据以每天多于250兆字节的速度增长,或者说是多于20亿千兆字节。这些数据必须有地方可以储存,哪怕只是暂时储存,然后再从数据库和应用中发送出去以供分析。由于积累了太多的新数据,以至于对这些数据的存储、管理、以及分析的工作量是极大的。这就是我们很少有人真正了解大数据的原因。
这些海量数据使得我们能听到很多关于大数据的内容,而要弄明白它却很难。正如我之前所说,数据同我们的存储、搜索、分析、组织、归档和筛选能力息息相关,而其现在的情形是我们所不能完全掌控的。
我们都知道数据是如何产生的,也大体知道我们创造某些数据的原因以及要如何处理这些数据,但我们所不知道的是如何处理如此大量的数据。
事实上,我们甚至不确定如何去处理产生于大数据的元数据(metadata)。
在这里说明一下,你最近可能听说过很多关于元数据的事情,是关于美国国家安全局(NSA)所获取和分析的私人数据的。元数据就是有关数据的数据,这是个有点奇怪的概念。简单来说,元数据是对你的数据的一种描述,你可能还没意识到,你每时每刻都在使用元数据。比如,当你拍了一张数码照片时,元数据描述的就是关于这张照片的尺寸、拍摄日期、存储位置、文件大小、像素等内容。
其他类型的元数据还有:
创建该数据的方式
该数据的目的
创建日期和时间
该数据的创建者
该数据在一个计算机网络里的创建位置
所使用的标准
如果要检查一张图片的元数据,你只需右键单击该图片文件,选择“属性”,然后再选择“详细”选项卡。
你可以看到,元数据虽然不是数据本身,却也占用存储空间,它是有关数据的数据。所以我们可以把大数据和大元数据放在一起来谈。当你认识到有比数据本身更多的数据存在之后,你应该就能对我们的数据高速增长的原因有更为深刻的理解了。
需要指出的是,元数据不是大数据庞大的原因,而只是使大数据变得更大。
在了解了数据和元数据之后,我们可以研究大数据究竟是什么了。
大数据就是大量的数据,它是比我们以往所处理的数据还要多的数据,并且来源也更为广泛,它包含元数据。它多到难以想象、难以存储、难以分析,这也是大数据的主要问题所在。
你仍然会有疑问:是什么让大数据难以理解?
正如我前面所说,我们从不同的数据源创建数据:手机、卫星、电子传感器、文本信息、日志文件等等。来源如此之广的数据是非常复杂的。
更深一层解释,如果你的全部数据都是图片,那么你的数据就很简单。当你拥有不同种类的数据以及不同的数据源时,你的数据的复杂程度就增加了。假如你经营着一家物流公司,比如UPS快递,那么你就会有来自很多不同数据源的数据。我们仅从其中三点来看数据的复杂程度:雇员、货车和包裹。当然,他们实际上的数据远远复杂得多,我们只是选出比较典型的来举例。
货车的数据包括货车位置(GPS定位),燃油消耗量,维修记录,购买价格,保险记录,送货量,司机姓名等等。现在考虑一下每个领域所涉及的所有不同的数据点(data
points)。维修记录又包含着油量变化、轮胎、蓄电池、每个单独的可换零件、损坏、里程以及更多的内容。再用这些数据点乘以UPS现在所管理的数以万计的货车数量——96394辆。
再加上你能想象得到的所有雇员信息,包括货车司机、装卸工、维修人员、雇员的医疗记录、空车定位、设备定位、统一定位以及其它有关雇员的数据点,一共有397100名雇员。
还要加上第三个数据源的信息:包裹重量、原产地、保险、目的地、运输方式、尺寸、收货信息,以及出发地和目的地之间的中转地,每天有1630万包裹。
你可以看到数据点是如何随着UPS处理的数据量的增加而迅速增加的。UPS收集了很多有趣的不同数据点,那张单子上的统计数据并不是原始数据,而是经过分析之后的数据。那么可以想象数据库服务器的数量、存储量以及为生成那页单子而要耗费的精力有多少。
这就是大数据。你必须收集、存储、分析、组织、筛选和利用数据。就是从收集到筛选和利用的这个过程,是大数据不被人们所熟知的东西。大数据是复杂且难以管理的。
我们对大数据欠缺了解的地方正是对其的管理部分。只有极少数人知道如何管理如此庞大而复杂的数据。大部分企业已发展起了自己的拼凑解决方案,即通常每个部门试着用不同的形式管理自己的数据。其结果就是,不仅这些企业拥有大量的不同数据,而且数据用不同的数据技术存储在不同的位置,大数据变成了大混乱。
现在你应该对大数据的内涵、出处、庞大的原因以及所存在的问题有了更好的理解。
为什么你认为大数据难以理解,或者为什么你认为它好理解?你可以将你的看法通过留言评论回复给我们。
说明一下,我用UPS快递举例是因为我知道UPS能产生大量的数据,目前它管理着超过16万兆字节的数据量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31