商业智能(BI)系统规划前的准备工作
通常在进行商业智能信息系统项目之前,可以先从明确经营分析的愿景和目的入手,确定分析方法和工具、设计经营分析框架、设计指标和报表、IT实现和持续改进机制建立等几个步骤,即先有经营分析体系再有商业智能。
第一步:需要明确目标,即商业智能系统建设的目标,并进行清晰描述和分解。目标可以是:以ERP系统数据为基础,对公司生产、经营活动进行全方位、多视角的综合分析;为公司经营决策提供必要的信息支撑,如图1所示
图1 系统建设目标和用户
第二步:需要明确具体的业务需求。根据实际情况可以细分到不同的用户,例如:公司领导、部门领导、相关业务管理人员。
而不同用户,对于业务和数据肯定会有不同的关注点,有不同的要求与需求。可以在明确业务需求的同时,在经营分析过程中,构建完整的应用模式与场景。例如:构建相应的领导看板(管理驾驶舱)、业务指标分析模型和日常业务报表,与不同用户进行对应。
第三步:在对系统的建设目标、使用用户和需求明确后,可以对需求/关注点进行详细分析。即通过经营分析的思路在系统的建设目标——决策分析和系统的实现物(已实现的统计报表以及未实现的看板、指标体系)之间建立起互通管道。
从企业运营的效率和效益出发,对基于企业核心能力和营运流程的关系进行梳理和拆解,形成一整套全面细致的指标体系。而在流程梳理的过程中也可分别把指标落实到相应的责任部门。
企业管理的结构其实就是指标体系的建立,从体系的建立到实现,会有一段漫长而艰辛的过程。指标明细通常会从不同的分析维度、通过分析处理后得到不同的结果,要实现指标,必定需要落实指标的数据来源,而这些数据,通常也就是我们ERP或者其他来源的基础数据。
第四步:在整个商业智能系统建设过程中,非常基础但却又非常关键的工作在于数据的收集和管理。如何把企业呆滞的数据盘活,以达到商业智能系统的数据统计分析的要求,也是在整个系统建设过程中非常有挑战的事情。
我们知道,在企业当中,经常会由于某些特殊问题,内部各个部门的数据可能存在矛盾,特别是在集团型企业中,由于管理分散,核算方式不一致,系统数据来源不一致,造成的数据无法进行汇总、统计、分析。通过数据标准化,建立企业数据字典,统一定义数据含义,同时对数据质量相对较差的系统和数据库进行数据清洗转换,以提高整体数据的应用功效。对数据来源进行一定程度的规范,可以保证数据源的唯一性,也可降低整体的风险。
第五步:建立业务指标到日常管理报表的关联。通常,企业在信息化建设过程中,会针对不同业务、不同部门各自推行信息系统:公司级、部门级,管理性、业务性。但都或多或少会存在信息孤岛,造成数据整合的难度。对于指标体系的建设,报表之间关系的建设,以及报表的梳理和调整都会造成阻碍。
在构建了完整的数据信息链条后,对于没有找到报表支撑的指标,应该需要考虑是否建立新的报表,如何落实数据来源,数据录入和维护的责任如何分布?反之,对于和任何指标都无关的报表,其价值和存在的必要性也需要推敲。
第六步:在建立了指标体系和报表体系后,如何展示更能说明问题?另一方面,如何展示指标的来源数据和指标的浮动以及历史数据的对比关系?
往往用户最关注的是指标应该如何在系统登陆后的首页面上进行展示。指标只是一个现状反馈,本身并不能包含太多的信息,基于指标进行的进一步分解才能获取更大价值。在指标上进行数据分析比对,才是商业智能关键所在。一是对于指标,应该有多种展示方式,比如各种统计图形、简单直接的数字、数据变化趋势等;二是对于指标或数据,应该提供便捷的多维度分析,比如统计区间、同比环比等对比分析,见图2。
图2 销售计划完成情况样图
如何规避内部因素,降低系统建设风险
1.前期准备工作要充分
(1)充分了解用户所需。
商业智能用户通常可以分为明显的几个大类:战略性、战术性和操作性。战略性用户很少做决策,但是每一个决策都会具有一个深远的影响。战术性用户则每个星期做出许多决策,而且会同时使用汇总和详细的信息,很可能需要每天对信息进行更新。操作性用户则是一线的员工,他们需要借助于在他们自己的应用程序中的数据来执行大量的事务。
了解谁将使用商业智能系统,以及他们出于什么目的来使用商业智能,他们需要的信息种类和使用的频率,会有助于指导商业智能系统的规划。
(2)合理考虑商业智能组成部分。
影响商业智能的因素有很多,元数据、数据整合、数据质量、主数据管理、数据建模分析、集中式度量管理、展现形式、门户。虽然上述这些因素可能本身不是商业智能战略的一部分,但他们对于系统整体的构建确实至关重要,它们可以影响企业商业智能系统实施的成功。
2.不要与企业生产旺季相冲突
众多企业的生产活动存在明显的周期性,对于周期性比较强的企业,在做商业智能系统规划时,需要特别注意避开这个高峰期,这主要是因为在项目实施过程中,会给用户增加很多的工作量。如基础数据的整理、系统使用的培训等。如果企业处于生产的旺季,员工恨不得多一双手的情况下,强行实施信息系统,基本属于火上加油,很容易造成忙中出乱,系统的风险比较高。
3.项目尽量不要跨年
在做项目规划时,还需要注意跨年度的问题。跨年度实施信息系统对企业来说是一个大忌。即使在年底项目上线之后,最好能让用户有一个学习的过程,特别需要一个连续性的过程。这就好像我们在学习时,课后要有一个复习的过程一样。如果只是在课堂上学习,课后没有复习,那么就很容易忘记。在日常工作中,我们经常忽视这个基本规律,在年底或者跨年度实施商业智能项目对企业会造成一些不可控的风险。
4.系统构建完成后的持续改进
在做商业智能项目规划时,很多企业仅仅将规划做到项目上线,而没有包含项目的持续改善阶段。很多案例表明,系统上线效果好仅仅是项目成功的第一步,而等到系统上线一段时间之后,系统的效果可能就会开始走下坡路。这主要就是因为没有做好系统后续的规划所导致的。具体地说,在系统的后续规划中要体现下面这些内容:
(1)如何确保前段时间的工作成果在后续工作中继续保持下去。如前面制定的工作流程、数据更新机制、数据准确性措施等在后续的内容中要得到彻底地执行。在系统的后续规划中,要有措施能够确保预先的政策能够被一如既往地执行下去。
(2)在做系统规划时,对此也应该设想一定的措施,如加强对新员工的培训,采取上岗证等,来确保降低商业智能系统关键用户的流失,或者新老员工替换过程中会对系统带来的负面影响。
总之,系统上线后的规划非常重要。很多企业正是因为缺乏这方面的认识,才导致系统在企业内部应用的过程中达不到预期的效果。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16