Python基础教程之利用期物处理并发
抨击线程的往往是系统程序员,他们考虑的使用场景对一般的应用程序员来说,也许一生都不会遇到……应用程序员遇到的使用场景,99% 的情况下只需知道如何派生一堆独立的线程,然后用队列收集结果。
本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。
本文重点:
1、掌握异步编程的相关概念;
2、了解期物future的概念、意义和使用方法;
3、了解Python中的阻塞型I/O函数释放GIL的特点。
一、异步编程相关概念
阻塞:程序未得到所需计算资源时被挂起的状态。换句话说,程序在等待某个操作完成期间,自身无法继续干别的事情,则称该程序在该操作上是阻塞的。
并发:描述的是程序的组织结构。指程序要被设计成多个可独立执行的子任务。并发以利用有限的计算机资源使多个任务可以被实时或近实时执行为目的。
并行:指的是多任务同时执行的程序状态,以利用多核CPU加速完成多任务为目的。
异步:为完成某个任务,不同程序单元之间过程中无需通信协调,也能完成任务的方式。
不相关的程序单元之间可以是异步的。简言之,异步意味着无序。
异步编程:以进程、线程、协程、函数/方法作为执行任务的基本单位,结合回调,事件循环、信号量等机制,以提高整体执行效率和并发能力的编程方式。
二、期物
就下载国旗为目标实现的三个客户端中,两个HTTP并发客户端比依序下载的脚本性能高很多。
由此说明使用并发可以高效处理网络I/O。
期物(future)指一种对象,表示异步执行的操作。
期物对象:concurrent.futures.Future或asyncio.Future类的实例。
三大方法:
Executor.submit():创建期物。
concurrent.futures.as_completed():迭代运行结束的期物,返回一个迭代器。
Executor.map(): 处理参数不同的同一个可调用对象。
小结:Executor.submit()加futures.as_completed()的组合比Executor.map()更灵活,因为submit()能处理不同的可调用对象和参数。
concurrent.futures模块的主要特色是ThreadPoolExecutor和ProcessPoolExecutor类,这两个类实现的接口能分别在不同的线程或进程中执行可调用的对象。
注意:通常情况下自己不应该创建期物,而只能由并发框架(concurrent.futures或asyncio)实例化。
实例:concurrent.futures模块应用
from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc):
image = get_flag(cc)
show(cc)
save_flag(image, cc.lower() + '.gif')
return cc
def download_many(cc_list):
workers = min(MAX_WORKERS, len(cc_list))
with futures.ThreadPoolExecutor(workers) as executor:
res = executor.map(download_one, sorted(cc_list))
return len(list(res))
if __name__ == '__main__':
main(download_many)
三、阻塞性I/O与GIL
Python标准库中所有阻塞型I/O函数都会释放全局解释器锁(GIL),允许其他线程运行。
因此尽管有GIL,Python线程仍然适合在I/O密集型系统使用。
四、线程和多进程的替代方案
对CPU密集型工作来说,要启动多个进程,规避GIL。
创建多进程最简单的方式是使用futures.ProcessPoolExecutor类。
threading和multiprocessing模块:是Python中多线程和多进程并发的低层实现。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13