Python基础教程之利用期物处理并发
抨击线程的往往是系统程序员,他们考虑的使用场景对一般的应用程序员来说,也许一生都不会遇到……应用程序员遇到的使用场景,99% 的情况下只需知道如何派生一堆独立的线程,然后用队列收集结果。
本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。
本文重点:
1、掌握异步编程的相关概念;
2、了解期物future的概念、意义和使用方法;
3、了解Python中的阻塞型I/O函数释放GIL的特点。
一、异步编程相关概念
阻塞:程序未得到所需计算资源时被挂起的状态。换句话说,程序在等待某个操作完成期间,自身无法继续干别的事情,则称该程序在该操作上是阻塞的。
并发:描述的是程序的组织结构。指程序要被设计成多个可独立执行的子任务。并发以利用有限的计算机资源使多个任务可以被实时或近实时执行为目的。
并行:指的是多任务同时执行的程序状态,以利用多核CPU加速完成多任务为目的。
异步:为完成某个任务,不同程序单元之间过程中无需通信协调,也能完成任务的方式。
不相关的程序单元之间可以是异步的。简言之,异步意味着无序。
异步编程:以进程、线程、协程、函数/方法作为执行任务的基本单位,结合回调,事件循环、信号量等机制,以提高整体执行效率和并发能力的编程方式。
二、期物
就下载国旗为目标实现的三个客户端中,两个HTTP并发客户端比依序下载的脚本性能高很多。
由此说明使用并发可以高效处理网络I/O。
期物(future)指一种对象,表示异步执行的操作。
期物对象:concurrent.futures.Future或asyncio.Future类的实例。
三大方法:
Executor.submit():创建期物。
concurrent.futures.as_completed():迭代运行结束的期物,返回一个迭代器。
Executor.map(): 处理参数不同的同一个可调用对象。
小结:Executor.submit()加futures.as_completed()的组合比Executor.map()更灵活,因为submit()能处理不同的可调用对象和参数。
concurrent.futures模块的主要特色是ThreadPoolExecutor和ProcessPoolExecutor类,这两个类实现的接口能分别在不同的线程或进程中执行可调用的对象。
注意:通常情况下自己不应该创建期物,而只能由并发框架(concurrent.futures或asyncio)实例化。
实例:concurrent.futures模块应用
from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc):
image = get_flag(cc)
show(cc)
save_flag(image, cc.lower() + '.gif')
return cc
def download_many(cc_list):
workers = min(MAX_WORKERS, len(cc_list))
with futures.ThreadPoolExecutor(workers) as executor:
res = executor.map(download_one, sorted(cc_list))
return len(list(res))
if __name__ == '__main__':
main(download_many)
三、阻塞性I/O与GIL
Python标准库中所有阻塞型I/O函数都会释放全局解释器锁(GIL),允许其他线程运行。
因此尽管有GIL,Python线程仍然适合在I/O密集型系统使用。
四、线程和多进程的替代方案
对CPU密集型工作来说,要启动多个进程,规避GIL。
创建多进程最简单的方式是使用futures.ProcessPoolExecutor类。
threading和multiprocessing模块:是Python中多线程和多进程并发的低层实现。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31