热线电话:13121318867

登录
首页精彩阅读使用R完成决策树分类
使用R完成决策树分类
2018-06-13
收藏

使用R完成决策树分类

传统的ID3和C4.5一般用于分类问题,其中ID3使用信息增益进行特征选择,即递归的选择分类能力最强的特征对数据进行分割,C4.5唯一不同的是使用信息增益比进行特征选择。
特征A对训练数据D的信息增益g(D, A) = 集合D的经验熵H(D) - 特征A给定情况下D的经验条件熵H(D|A)
特征A对训练数据D的信息增益比r(D, A) = g(D, A) / H(D)
而CART(分类与回归)模型既可以用于分类、也可以用于回归,对于回归树(最小二乘回归树生成算法),需要寻找最优切分变量和最优切分点,对于分类树(CART生成算法),使用基尼指数选择最优特征
一个使用rpart完成决策树分类的例子如下:
[plain] view plain copy
    library(rpart);  
      
    ## rpart.control对树进行一些设置  
    ## xval是10折交叉验证  
    ## minsplit是最小分支节点数,这里指大于等于20,那么该节点会继续分划下去,否则停止  
    ## minbucket:叶子节点最小样本数  
    ## maxdepth:树的深度  
    ## cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度  
    ct <- rpart.control(xval=10, minsplit=20, cp=0.1)  
      
    ## kyphosis是rpart这个包自带的数据集  
    ## na.action:缺失数据的处理办法,默认为删除因变量缺失的观测而保留自变量缺失的观测。           
    ## method:树的末端数据类型选择相应的变量分割方法:  
    ## 连续性method=“anova”,离散型method=“class”,计数型method=“poisson”,生存分析型method=“exp”  
    ## parms用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法(gini和information)  
    ## cost我觉得是损失矩阵,在剪枝的时候,叶子节点的加权误差与父节点的误差进行比较,考虑损失矩阵的时候,从将“减少-误差”调整为“减少-损失”  
    fit <- rpart(Kyphosis~Age + Number + Start,  
        data=kyphosis, method="class",control=ct,  
        parms = list(prior = c(0.65,0.35), split = "information"));  
      
    ## 第一种  
    par(mfrow=c(1,3));  
    plot(fit);  
    text(fit,use.n=T,all=T,cex=0.9);  
      
    ## 第二种,这种会更漂亮一些  
    library(rpart.plot);  
    rpart.plot(fit, branch=1, branch.type=2, type=1, extra=102,  
               shadow.col="gray", box.col="green",  
               border.col="blue", split.col="red",  
               split.cex=1.2, main="Kyphosis决策树");  
      
    ## rpart包提供了复杂度损失修剪的修剪方法,printcp会告诉分裂到每一层,cp是多少,平均相对误差是多少  
    ## 交叉验证的估计误差(“xerror”列),以及标准误差(“xstd”列),平均相对误差=xerror±xstd  
    printcp(fit);  
      
    ## 通过上面的分析来确定cp的值  
    ## 我们可以用下面的办法选择具有最小xerror的cp的办法:  
    ## prune(fit, cp= fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])  
      
    fit2 <- prune(fit, cp=0.01);  
    rpart.plot(fit2, branch=1, branch.type=2, type=1, extra=102,  
               shadow.col="gray", box.col="green",  
               border.col="blue", split.col="red",  
               split.cex=1.2, main="Kyphosis决策树");  

效果图如下:

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询