
R读写Excel文件中数据的方法
用R语言读写Excel的方法有很多,但每种方法都有让人头疼的地方,如xlsx包的代码复杂,只支持Excel2007;RODBC不易理解,限制太多,程序不稳定,会出各种怪毛病。另存为csv格式的方法倒是比较通用比较稳定,但又存在操作麻烦,无法程序化处理多个文件的问题。提取xml也是个办法,但步骤太多代码太复杂,令人望而生畏。用剪贴板转换也不好,这同样需要人工参与,还不如存为csv。
相比之下,用gdata包来读取,配合WriteXLS写入Excel则可以很好的避开上述麻烦。这两个包都支持Excel2003和Excel2007,运行稳定,代码简单直观,也不需要人工参与。下面用一个例子来说明这两个函数包读写Excel的方法。
目标:
ordersData目录下有多个结构相同的Excel文件,有些是Excel2007格式,有些是Excel2003格式,这些文件存储着历年来的销售订单。请读取这些文件,并统计出每个客户的总销售额,最后将结果写入result.xlsx。下面是2011.xlsx的部分数据:
代码:
library(gdata)
library(WriteXLS)
setwd("E: /ordersData")
fileList<-dir()
orders<-read.xls(fileList[1])
for (file in fileList[2:length(fileList)]){
orders<-rbind(orders,read.xls(file))
}
result<-aggregate(orders[,4], orders[c(2)],sum)
WriteXLS("result","result.xlsx")
result.xlsx中的部分数据如下:
代码解读
1、library(gdata)和library(WriteXLS)这两句代码用来引入第三方函数包,这两个包具有read.xls和WriteXLS函数,可以分别执行读取和写入Excel的动作。
2、fileList<-dir()这句代码列出了目录内的所有文件,之后的for语句则是循环读取文件,并将数据拼合到数据框orders中。如果目录内有其他文件,则应当用通配符来过滤。
3、result<-aggregate(orders[,4], orders[c(2)],sum),这句代码用来执行分组汇总,其中orders[,4]代表汇总列(即Amount),orders[c(2)]代表分组列(即Client)。
4、read.xls和WriteXLS虽然来自于不同的包,但都支持data.frame数据类型,因此可以很好的配合起来。另外,read.xls函数可以自动识别Excel2003和Excel2007格式,使用起来非常方便。
5整段代码都很简洁,初学者可以轻松掌握。
注意事项:
1.版本
gdata和WriteXLS不是R语言自带的库函数,而是第三方包,因此需要额外下载安装。另外,这两个函数包都会用到Perl环境,因此挑选合适版本的Perl尤为重要。经过尝试,当R语言的版本是2.15.0时,gdata最匹配的版本是2.13.3,WriteXLS的版本号则是3.5.0,但用最新的Perl环境与之配合时会出问题,需要使用旧一点的5.14.2版本才行,否则会报以下错误:
Error in xls2sep(xls, sheet, verbose = verbose, ..., method = method, :
Intermediate file 'C:\Users\Thim\AppData\Local\Temp\RtmpMHvLZS\file224060624738.csv' missing!
2.性能
读写小文件没问题,但读写稍大些的文件时会发现gdata和WriteXLS的性能极差(这也许是Perl的原因),比如读一个8列20万行的Excel就需要8到10分钟。如果特别关注性能,可以使用xlsx函数包。当然,这样一来就无法支持Excel2003了。事实上,xlsx的性能并不比gdata强太多,真正要解决性能问题,还是应当将所有的Excel文件都转为2007格式,并解压出里面的xml文件,通过解析xml文件来读取数据。
替代方案
对于R语言中存在的版本冲突和性能问题,我们也可以使用Python、集算器、Perl等语言来解决。和R语言一样,它们都可以读写Excel文件并进行数据计算。下面简单介绍集算器和Python的解决方案。
集算器已将访问EXCEL的功能打入安装包,无需单独下载第三方包,支持读写Excel2003和Excel2007,对更老的版本以及Excel2010也支持。代码如下:
这个方案要比R语言难用多了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10