集 Python、C、R、Ruby 之所长,动态编程语言 Julia 1.0 正式发布
动态编程语言 Julia 迎来了 1.0 正式版本,下载地址:
https://julialang.org/downloads/
Julia 可以看作是一门集众家之所长的编程语言,在首次公开时开发团队就已明确其需求:
我们想要一种拥有自由许可的开源语言,同时拥有 C 的速度和 Ruby 的灵活。我们想要一种同像性语言,有像 Lisp 这样真正的宏,也有像 Matlab 这样的浅显熟悉的数学符号。我们想要一门像 Python 一样可用于通用编程,像 R 一样易于统计,像 Perl 一样自然地用于字符串处理,像 Matlab 一样强大的线性代数,像 shell 一样擅长将程序粘合在一起的语言。它简单易学,却能让严苛的黑客为之倾心。我们希望它是交互式的,具备可编译性。
开发团队表示,围绕这一语言,一个充满活力的社区已蓬勃发展起来,为实现同一目标,来自世界各地的开发者们不断地重塑并精炼 Julia 。超过 700 人对 Julia 做出了实质性贡献,还有更多的人数以千计的令人惊叹的 Julia 开源包。总之,我们构建了这样一种语言:
快速:Julia 为高性能而生。Julia 程序通过 LLVM 为多个平台编译高效本地代码。
通用:它使用多分派(multiple dispatch)作为范例,使得表达许多面向对象和函数式编程模式变得容易。标准库提供异步 I / O 、进程控制、日志记录、性能分析、包管理器等。
动态:Julia 是动态编程语言,与脚本语言相似,并且对交互式使用有很好的支持。
专业:它擅长于数值计算,其语法非常适合数学,支持多种数字数据类型,和开箱即用的并行性。Julia 的多分派非常适合定义数字和数组类型的数据类型。
(可选)多样:Julia 具有丰富的描述性数据类型,类型声明可用于阐明和巩固程序。
可组合:Julia 的包可以很好地协同工作。单位数量的矩阵,或货币和颜色的数据表列都可以组合工作 - 并具有良好的性能。
想要尝试 1.0 的用户,如果是从 Julia 0.6 或更早版本升级代码,建议先使用 0.7 过渡版。0.7 版本包括弃用警告,可以帮助指导你完成升级过程。等到你的代码不再出现警告,就可以直接升级至 1.0 而不会产生任何功能性更改。已注册的软件包也正在利用 0.7 的过渡期发布 1.0 兼容的更新。
当然,Julia 1.0 中最重要的一个新特性是对语言 API 稳定性的承诺:你为 Julia 1.0 编写的代码将可以继续在 Julia 1.1、1.2 等版本中运行。语言是“完全成熟的”,核心语言开发者和社区都可以专注于基于这个坚实的基础去构建软件包、工具和新特性。
Julia 1.0 不仅仅涉及稳定性,还引入了一些新的、强大的和创新的语言功能。自 0.6 版本以来的一些新特性包括:
全新的内置包管理器带来了巨大的性能改进,使包及其依赖项安装变得前所未有的简单。它还支持 per-project 的包环境,并记录工作应用的确切状态,以便与他人共享 - 以及你未来的项目。此外,还引入了对私有包和包存储库的无缝支持。你可以使用与开源软件包生态系统相同的工具来安装和管理私有软件包。
Julia 有一个新的缺失值表示规范。能够表示和处理缺失的数据是统计和数据科学的基础。采用典型的 Julian 方式,新的解决方案具有通用性、可组合性和高性能。任何泛型集合类型都可以通过允许元素包含预定义值来有效地支持缺失值 missing 。在之前的 Julia 版本中,这种“统一类型化”集合的性能会太慢,但随着编译器的改进允许 Julia 匹配其他系统中自定义 C 或 C ++ 缺失数据表示的速度,同时也更加通用和灵活。
内置 String 类型现在可以安全地保存任意数据。你的程序不会因为无效 Unicode 的单个丢失字节就浪费数小时或数天的时间。保留所有字符串数据,同时指示哪些字符有效或无效,使你的应用程序可以安全方便地处理具有所有不可避免的瑕疵的真实数据。
广播(broadcasting)已经成为一种具有方便语法特性的核心语言功能 - 它现在比以往更强大。在 Julia 1.0 中,将广播扩展到自定义类型并在 GPU 和其他矢量化硬件上实现高效优化计算很简单,为将来更高的性能提升铺平了道路。
命名元数组是一种新的语言特性,它使得通过名称有效和方便地表示和访问数据。例如,你可以将一行数据表示为 row = (name="Julia", version=v"1.0.0", releases=8) 并使用 row.version 访问该 version 列,其性能与不那么方便的 row[2] 相同。
点运算符现在可以重载,允许类型使用 obj.property 语法来获取除 getting 和 setting 结构字段之外的含义。这对于使用 Python 和 Java 等面向对象的语言进行更顺畅的互操作时特别有用。属性访问器重载还允许获取一列数据以匹配命名元组语法的语法:你可以编写 table.version 访问 version 列,就像使用 row.version 访问 version 行的字段一样。
Julia 的优化器在很多方面远比下面列出来的还要更聪明,但这些亮点仍值得一提。优化器现在可以通过函数调用传播常量,从而允许比以前更好地消除无用代码和静态评估。编译器在避免在长期对象周围分配短期包装器方面也要好得多,这使得开发者可以使用方便的高级抽象而无需降低性能成本。
现在始终使用与声明相同的语法调用参数类型构造函数,这消除了语言语法中比较模糊且令人困惑的角落。
迭代协议已经完全重新设计,以便更容易实现多种迭代。
作用域规则(scope rule)已经简化。无论命名的全局绑定是否已存在,局部作用域的结构现在都是一致的。这消除了先前存在的 “soft/hard scope” 差异,并且意味着 Julia 现在可以始终静态地确定变量是本地的还是全局的。
语言本身非常精简,许多组件被拆分为“标准库”软件包,而不再属于“基础”语言的一部分。如果需要,可以导入它们(不需要安装),但它们不再被强加给你。在未来,这也将允许标准库独立于 Julia 本身进行版本控制和升级,从而允许它们以更快的速度发展和改进。
对 Julia 的所有 API 进行彻底的评估,以提高一致性和可用性。许多模糊的遗留命名和低效的编程模式已被重命名或重构,以更优雅地匹配 Julia 的功能。这使得处理集合更加一致和连贯,以确保参数排序遵循整个语言的一致标准,并在适当的时候(更快的)将关键字参数整合到 API 中。
此外,围绕 Julia 1.0 的新特性,还正在构建许多新的外部软件包。像是:改进数据处理和操作生态系统,以利用新的缺失支持。
Cassette.jl 提供了一种强大的机制,可以将代码转换传递注入 Julia 的编译器,从而实现事后分析和现有代码的扩展。除了用于分析和调试等开发工具之外,这甚至可以实现机器学习任务的自动区分。
异构体系结构支持得到了极大的改进,并且与 Julia 编译器的内部结构进一步分离。
有关更改的完整列表,可参阅:
0.7 NEWS file:
https://docs.julialang.org/en/release-0.7/NEWS/
Julia 1.0:
https://julialang.org/blog/2018/08/one-point-zero
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31