Python的dict字典结构操作方法学习笔记
这篇文章主要介绍了Python的dict字典结构操作方法学习笔记本,字典的操作是Python入门学习中的基础知识,需要的朋友可以参考下
一.字典的基本方法
1.新建字典
1)、建立一个空的字典
>>> dict1={}
>>> dict2=dict()
>>> dict1,dict2
({}, {})
2)、新建的时候初始化一个值
>>> dict1={1:'a',2:'b',3:'c'}
>>> dict1
{1: 'a', 2: 'b', 3: 'c'}
3)、利用元组
>>> dict1=dict([(1,'a'),(2,'b'),(3,'c')])
>>> dict1
{1: 'a', 2: 'b', 3: 'c'}
2、获取方法
1)、get(key) 从字典中获取一个key对应的value,返回value
>>> dict1={1:'a',2:'b',3:'c'}
>>> dict1.get(1)
'a'
如果字典里面不存在,则返回一个 NoneType
>>> type(dict1.get(4))
<type 'NoneType'>
如果要求key值不存在,指定另外一个值返回的话
>>> dict1.get(4,'not found')
'not found'
2)、keys() 获取字典中所有的key值,返回一个列表
>>> dict1.keys()
[1, 2, 3]
3)、values() 与keys()方法对应,返回的字典中的所有value的列表
>>> dict1.values()
['a', 'b', 'c']
4)、items() 返回一个 (key,value)对应的元组
>>> dict1.items()
[(1, 'a'), (2, 'b'), (3, 'c')]
5)、iterkeys() , itervalues() , iteritems() 也是分别获取所有的key,value,(key,value)元祖,只是不在是返回列表,而是一个迭代器
>>> for key in dict1.iterkeys():
print key
1
2
3
3、设置字典值的方法
1)、直接的方法就是
>>> dict1[4]='d'
>>> dict1
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
但是,这个方法就是,如果我想添加的key值已经在字典中,那么就会覆盖掉原来的value值
>>> dict1[4]='e'
>>> dict1
{1: 'a', 2: 'b', 3: 'c', 4: 'e'}
2)、setdefault(key,value) 这个方法的好处就是,如果插入的key不存在字典中,那么插入字典并返回该value,否则的存在于字典中的话,那么返回存在的value,不会覆盖掉
>>> dict1
{1: 'a', 2: 'b', 3: 'c', 4: 'e'}
>>> dict1.setdefault(5,'f')
'f'
>>> dict1.setdefault(5,'g')
'f'
>>> dict1
{1: 'a', 2: 'b', 3: 'c', 4: 'e', 5: 'f'}
4、删除字典
1)pop(key) 删除指定key的一项,成功返回一个删除项的value, 如果不存在,会抛出异常,所以在用这个方法时候,都要用判断 key是否存在,或者catch这个异常
>>> def pop_key(d,key):
try:
d.pop(key)
print "sucess"
except:
print "key is not in dict"
>>> dict1
{1: 'a', 2: 'b'}
>>> pop_key(dict1,3)
key is not in dict
或者
>>> def sub_dict2(d,key):
if d.has_key(key):
d.pop(key)
print "sucess"
else:print "key is not in dict"
>>> pop_key(dict1,3)
key is not in dict
这里的has_key(key)就是判断字典里面是否有该key,当然,也可以用 key in d 来代替
2) popitem() 和pop()类似,只是他是删除一个(key,value)的元组
利用上面的方法,可以得使用一些进阶的用法
A、我们通过2个列表来创建一个字典,第一个列表是所有的key,第二个列表是所有的value
>>> list1=[1,2,3]
>>> list2=['a','b','c']
>>> dict1=dict(zip(list1,list2))
>>> dict1
{1: 'a', 2: 'b', 3: 'c'}
B、找出某一个字典的子字典
>>> dict1
{1: 'a', 2: 'b', 3: 'c'}
>>> dict1=dict([(1,'a'),(2,'b'),(3,'c')])
>>> dict1
{1: 'a', 2: 'b', 3: 'c'}
>>> subkeys=[1,3]
>>> def sub_dict(d,subkeys):
return dict([(k,d.get(k)) for k in subkeys if k in d])
>>> print sub_dict(dict1,subkeys)
{1: 'a', 3: 'c'}
C、反转字典,也就是key变成新字典的value,value变成新字典的key(注意,如果value值有重复,反转后的字典就只会保留一个
>>> def invert_dict(d):
return dict([(k,v) for v,k in d.iteritems()])
>>> print invert_dict(dict1)
{'a': 1, 'c': 3, 'b': 2}
>>>
5、其他基本的方法
1) has_key(key) 判断key是否在字典中
2)copy()返回一个字典的副本(该复制是一个浅复制)
>>> d2={1:[1],2:[2],3:[3]}
>>> d3=d2.copy()
>>> d3[1].append(4)
>>> d2[1]
[1, 4]
如果要深复制的话,就要用到copy.deepcopy(a)
>>> d2={1:[1],2:[2],3:[3]}
>>> import copy
>>> d3=copy.deepcopy(d2)
>>> d3[1].append(4)
>>> print d2[1] , d3[1]
[1] [1, 4]
3)clear( ) 清空dict
4)update(d) 用一个字典来跟新另外一个字典,有点类似与2个字典的合并
>>> dict1={1: 'a', 2: 'b', 3: 'c'}
>>> dict2={1:'x',4:'y'}
>>> dict1.update(dict2)
>>> dict1
{1: 'x', 2: 'b', 3: 'c', 4: 'y'}
>>>
二、遍历
字典的遍历方法很多
1、直接利用dict
>>> d
{'a': 'aa', 'c': 'cc', 'b': 'bb'}
>>> for i in d:
print i,d[i]
a aa
c cc
b bb
2、利用items()
>>> for i,v in d.items():
print i,v
a aa
c cc
b bb
当然也可以这样
>>> for (i,v) in d.items():
print i,v
a aa
c cc
b bb
我印象中有个文章就是比较这2个方法(有括号和没括号)的效率,说字典大小在200以下时候,有括号速度快一点,200以上时候,无括号速度快一点,具体我也没测试。
3、iteritems()
(我觉得比较好的方法)
>>> for k,v in d.iteritems():
print k,v
a aa
c cc
b bb
其他还有些遍历方法,但是我感觉就这3个就足够了
三、一些进阶用法
1、一键多值
一般情况,字典都是一对一映射的,但如果我们需要一对多的映射,比如一本书,我们要统计一些单词出现的页数。那么,可以用list作为dict的value值。在利用setdefault()方法就可以完成
>>> d={'hello':[1,4,9],"good":[1,3,6]}
>>> d
{'good': [1, 3, 6], 'hello': [1, 4, 9]}
>>> d.setdefault('good',[]).append(7)
>>> d
{'good': [1, 3, 6, 7], 'hello': [1, 4, 9]}
>>> d.setdefault('bad',[]).append(2)
>>> d
{'bad': [2], 'good': [1, 3, 6, 7], 'hello': [1, 4, 9]}
>>>
当然,如果写成一个函数话,就可以更方便的使用,
我们也可以利用set来代替list
>>> def addFunc(d,word,pag):
d.setdefault(word,set()).add(pag)
>>> d={'hello':set([1,4,9]),"good":set([1,3,6])}
>>> addFunc(d,'hello',8)
>>> d
{'good': set([1, 3, 6]), 'hello': set([8, 1, 4, 9])}
>>> addFunc(d,'bad',8)
>>> d
{'bad': set([8]), 'good': set([1, 3, 6]), 'hello': set([8, 1, 4, 9])}
2、利用字典完成简单工厂模式
字典的value不单单只是一些常见的字符串,数值,还可以是类和方法,比如我们就可以这样来实现简单工厂模式
>>> class cat(object):
def __init__(self):
print 'cat init'
>>> class dog(object):
def __init__(self):
print 'dag init'
>>> d={'cat':cat,'dog':dog}
>>> def factoryFunc(d,name):
if name in d:
return d[name]()
else:
raise Exception("error")
>>> cat=factoryFunc(d,'cat')
cat init
另外一个例子,利用变量来控制执行的函数
>>> def deal_cat():
print 'cat run!!'
>>> def deal_dog():
print 'dag run!!'
>>> d={'cat':deal_cat ,'dog':deal_dog }
>>> animal='cat'
>>> d[animal]()
cat run!!
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10