作者 | CDA数据分析师
进行到这一步就可以算是开始正式的烹饪了,在这部分之前的数据操作部分我们列举了一些不同维度的分析指标,这一章我们主要看看这些指标都是怎么计算出来的。
算术运算就是基本的加减乘除,在Excel或者Python中数值类型的任意两列可以直接进行加、减、乘、除运算,Excel中的算术运算比较简单,这里就不展开了,下面主要介绍Python中的算术运算。
两列相加的具体实现如下图所示:
两列相减的具体实现如下图所示:
两列相乘的具体实现如下图所示:
两列相除的具体实现如下图所示:
任意一列加/减一个常数值,这一列中的所有值都加/减这个常数值,具体实现如下图所示:
任意一列乘/除一个常数值,这一列中的所有值都乘/除这个常数值,具体实现如下图所示:
比较运算和Python基础知识中讲到的比较运算一致,也是常规的大于、等于、小于之类的,只不过这里的比较是在列与列之间进行的。
在Excel中列与列之间的比较运算和Python中的方法一致,例子如下图所示。
下面是一些Python中列与列之间比较的例子。
上面讲到的算术运算和比较运算都是在列与列之间进行的,运算结果是有多少行的值就会返回多少个结果,而汇总运算是将数据进行汇总返回一个汇总以后的结果值。
1、count非空值计数
非空值计数就是计算某一个区域中非空(单元格)数值的个数。
在Excel中counta()函数用于计算某个区域中非空单元格的个数。与counta()函数类似的一个函数是count()函数,它用于计算某个区域中含有数字的单元格的个数。
在 Python 中,直接在整个数据表上调用 count()函数,返回的结果为该数据表中每列的非空值的个数,具体实现如下所示。
count()函数默认是求取每一列的非空数值的个数,可以通过修改axis参数让其等于1,来求取每一行的非空数值的个数。
也可以把某一列或者某一行索引出来,单独查看这一列或这一行的非空值个数。
2、sum求和
求和就是对某一区域中的所有数值进行加和操作。
在 Excel 中要求取某一区域的和,直接在 sum()函数后面的括号中指明要求和的区域,即要对哪些值进行求和操作即可。例子如下所示。
在Python中,直接在整个数据表上调用sum()函数,返回的是该数据表每一列的求和结果,例子如下所示。
sum()函数默认对每一列进行求和,可通过修改axis参数,让其等于1,来对每一行的数值进行求和操作。
也可以把某一列或者某一行索引出来,单独对这一列或这一行数据进行求和操作。
3、 mean求均值
求均值是针对某一区域中的所有值进行求算术平均值运算。均值是用来衡量数据一般情况的指标,容易受到极大值、极小值的影响。
在Excel中对某个区域内的值进行求平均值运算,用的是average()函数,只要在average()函数中指明要求均值运算的区域即可,比如:
在Python中的求均值利用的是mean()函数,如果对整个表直接调用mean()函数,返回的是该表中每一列的均值。
mean()函数默认是对数据表中的每一列进行求均值运算,可通过修改 axis 参数,让其等于1,来对每一行进行求均值运算。
也可以把某一列或者某一行通过索引的方式取出来,然后在这一行或这一列上调用mean()函数,单独求取这一行或这一列的均值。
4、 max求最大值
求最大值就是比较一组数据中所有数值的大小,然后返回最大的一个值。
在Excel和Python中,求最大值使用的都是max()函数,在Excel中同样只需要在max()函数中指明要求最大值的区域即可;在Python中,和其他函数一样,如果对整个表直接调用max()函数,则返回该数据表中每一列的最大值。max()函数也可以对每一行求最大值,还可以单独对某一行或某一列求最大值。
5、min求最小值
求最小值与求最大值是相对应的,通过比较一组数据中所有数值的大小,然后返回最小的那个值。
在Excel和Python中都使用min()函数来求最小值,它的使用方法与求最大值的类似,这里不再赘述。示例代码如下。
6、 median求中位数
中位数就是将一组含有n个数据的序列X按从小到大排列,位于中间位置的那个数。
中位数是以中间位置的数来反映数据的一般情况,不容易受到极大值、极小值的影响,因而在反映数据分布情况上要比平均值更有代表性。
现有序列为X:{X1、X2、X3、......、Xn}。
如果n为奇数,则中位数:
如果n为偶数,则中位数:
例如,1、3、5、7、9的中位数为5,而1、3、5、7的中位数为(3+5)/2=4。
在Excel和Python中求一组数据的中位数,都是使用median()函数来实现的。
下面为在Excel中求中位数的示例:
在Python中,median()函数的使用原则和其他函数的一致。
7、mode求众数
顾名思义,众数就是一组数据中出现次数最多的数,求众数就是返回这组数据中出现次数最多的那个数。
在Excel和Python中求众数都使用mode()函数,使用原则与其他函数完全一致。
在Excel中求众数的示例如下:
在Python中求众数的示例如下:
8、var求方差
方差是用来衡量一组数据的离散程度(即数据波动幅度)的。
在Excel和Python中求一组数据中的方差都使用var()函数。
下面为在Excel中求方差的示例:
在Python中,var()函数的使用原则和其他函数的一致。
9、std求标准差
标准差是方差的平方根,二者都是用来表示数据的离散程度的。
在Excel中计算标准差使用的是stdevp()函数,示例如下:
在Python中计算标准差使用的是std()函数,std()函数的使用原则与其他函数的一致,示例如下:
10、quantile求分位数
分位数是比中位数更加详细的基于位置的指标,分位数主要有四分之一分位数、四分之二分位数、四分之三分位数,而四分之二分位数就是中位数。
在Excel中求分位数用的是percentile()函数,示例如下:
在Python中求分位数用的是quantile()函数,要在quantile后的括号中指明要求取的分位数值,quantile()函数与其他函数的使用规则相同。
相关性常用来衡量两个事物之间的相关程度,比如我们前面举的例子:啤酒与尿布二者的相关性很强。我们一般用相关系数来衡量两者的相关程度,所以相关性计算其实就是计算相关系数,比较常用的是皮尔逊相关系数。
在Excel中求取相关系数用的是correl()函数,示例如下:
在Python中求取相关系数用的是corr()函数,示例如下:
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16