作者 | CDA数据分析师
之前的文章写了Python的基础知识,从这部分内容开始正式进入到正式的数据分析过程中,主要讲述每个数据分析过程都会用到什么操作,这些操作用Excel是怎样实现的,如果用Python,那么代码又该怎么写。
接下来的几章我们会用到Pandas、NumPy、matplotlib这几个模块,在使用它们之前我们需要先将其导入,导入的方法在Python基础知识部分提到过,一个程序中只需要导入一次即可。
为了引用模块时书写方面,上面的代码中用as分别给这几个模块起了别名。所以在本文中见到pd就是代表Pandas,见到np就是代表NumPy,见到plt就是代表matplotlib . pyplot。
Series是一种类似于一位数组的对象,由一组数据及一组与之相关的数据标签(即索引)组成。
上面这样的数据结构就是Series,第一列数字是数据标签,第二列是具体的数据,数据标签与数据是一一对应的,上面的数据用Excel表展示如下表所示:
2、创建一个Series
创建一个Series利用的方法是pd.Series(),通过给Series()方法传入不同的对象即可实现
(1)传入一个列表
传入一个列表的实际如下所示:
如果只是传入一个列表不指定数据标签,那么Series会默认使用从0开始的数做数据标签,上面的0、1、2、3就是默认的数据标签。
(2)指定索引
直接传入一个列表会使用默认索引,也可以通过设置index参数来自定义索引。
(3)传入一个字典
也可以将数据与数据标签以key:value(字典)的形式传入,这样字典的key值就是数据标签,value就是数据值。
3、利用index方法获取Series的索引
获取一组数据的索引是比较常见的需求,直接利用index方法 就可以获取Series的索引值,代码如下图所示:
4、利用values方法获取Series的值
与索引值相对用的就是获取Series的值,使用的方法是values方法。
Series是由一组数据与一组索引(行索引)组成的数据结构,而DataFrame是由一组数据与一对索引(行索引和列索引)组成的表格型数据结构。之所以叫表格型数据结构,是因为DataFrame是数据形式和Excel的数据存储形式很相近,接下来的章节围绕DataFrame这种表格型数据结构展开。下面就是一个简单的DataFrame数据结构。
上面这种数据结构和Excel的数据结构很像,既有行索引又有列索引,由行索引和列索引确定唯一值。如果把上面这种结构用Excel表展示如下图所示。
2、创建一个DataFrame
创建DataFrame使用的方法是pd.Dataframe(),通过DataFrame()的方法传入不同的对象即可实现。
(1)传入一个列表
传入一个列表的实现如下图所示:
只传入一个单一列表时,该列表的值会显示成一列,且行和列都是从0开始的默认索引。
(2)传入一个嵌套列表
当传入一个嵌套列表时,会根据嵌套列表数显示成多列数据,行、列索引同样是从0 开始的默认索引。列表里面嵌套的列表也可以换成元组。
(3)指定行、列索引
如果只给DataFrame()方法传入列表,DataFrame()方法的行、列索引都是默认值,则可以通过设置columns参数自定义列索引,设置index参数自定义行索引。
(4)传入一个字典
传入一个字典的实现如下图所示。
直接以字典的形式传入DataFrame时,字典的key值就相当于列索引,这个时候如果没有设置行索引,行索引还是使用从0 开始的默认索引,同样可以使用index参数自定义行索引,代码如下:
3、获取DataFrame的行、列索引
利用columns方法获取DataFrame的列索引。
利用index方法获取DataFrame的行索引。
4、获取DataFrame的值
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13