更多考试介绍及备考福利请点击:CDA 认证考试中心官网
但对于很多考生来说,没有备考经验,不知道应该如何备考?今天,我来指导大家应该如何备考,让大家充分准备,拿下CDA考试。在CDA考试大纲中为新考生讲解备考经验一下。
如何进行有效的、有针对性的备考?
——LEVEL 1 业务数据分析师
LEVEL 1 学习内容涉及描述性统计、推断性统计、SQL数据库基础、数据采集以及数据建模分析等多方面的知识和技能,其知识系统且理论性强,所以学习时不要死记硬背,而要讲求学习技巧。
CDA认证考试 Level Ⅰ 的难点分析
SQL和统计学的部分相对是比较简单的,多加练习即可掌握。
比较难的是多元统计的,如果不是统计学专业系统学习过的话理解起来还是比较吃力的。主成分分析、因子分析、聚类分析、分类分析、逻辑回归的概念理解起来都非常困难,就更谈不上应用了,实际上这些也是掌握起来比较困难的部分。建议多通过视频进行学习,重复观看,通过老师的讲解逐渐建立起多元统计的思维和逻辑,吃透理解知识点,达到可应用的层面。考试遇到同类型的问题,也不慌。
对备考者们的建议
首先要有充分的时间备考。临时抱佛脚也许可以侥幸通过考试,但对于自己掌握知识没有太大的帮助,毕竟考试是为了学习,不可本末倒置。
其次要有坚持不懈的精神。简单的知识不可大意,学到通透为止,复杂的地方不畏惧,死磕到底,要树立起终身学习的信念。考试通过并不意味着结束,而仅仅意味着开始。
第三要有提高效率的方法。对于初学者来说,你能遇到的绝大多数问题都有大神帮你解决,并且写成了博客,可以到CSDN上去搜一搜,相信你会有很大的收获。
——LEVEL 2 建模分析师方向
考试涉及数据挖掘基础理论、数据预处理、预测型数据挖掘模型、描述型数据挖掘模型四大部分。
CDA认证考试 Level Ⅱ 建模分析师的难点分析
客观题中会有些迷惑性的选项或字样,如果不加辨别很容易出错;还有些之前未了解过的算法,很难在较短时间内有深刻记忆;案例操作题中缺失值,需要使用合适的值填充缺失值。算法细节不好理解,需要从多个角度反复思考。遇到有较大的问题,比如如何选择合适的算法。在算法选择后,如何调整最优参数来提升模型预测或分类的准确度。如有一起备考可以讨论的伙伴,会大大减少这方面的困扰。
CDA2建模相比CDA1来说更偏重于实战多一些,所以对我这种实战大于理论的人来说更适应一些。印象比较深刻的是在做第二套模拟题时碰到一道计算贝叶斯的题目,算出来的答案和标准答案不一致,群里讨论了很久,最后还是依靠CDA老师给出了解题思路。所以群内讨论是一个很好的学习方法,只有沟通交流才能迅速进步。
对备考者们的建议
大纲中的内容要全部掌握,参考书尽量看。复习到位的话,理论题分数差距不大,重点在实操题,多动手,多尝试。考试涉及到的内容多,范围广,在准备的时候要抓重点;另外案例操作题先要理解数据,理解数据背后的业务逻辑,不要直接就训练模型。
——LEVEL 2 大数据分析师方向
最后,我们来聊一聊LEVEL 2 大数据分析师。
CDA认证考试 Level Ⅱ 大数据分析师的难点分析
1)Hadoop和Spark运行机制不易理解,有条件的应去图书馆寻找相关书籍,多看多思考多记忆,阅读源码和断点调试有助于理解。
2)SparkMLlib机器学习部分内容较多,也是实操的重点内容,应结合实例加深对各个算法的理解。
对备考者们的建议
1)由于大数据生态涉及架构较多,没有基础的同学应以Spark学习为主,有基础的同学应以Spark与各生态结合应用为主,通过考试系统的学习或复习相关知识点,同时Scala的学习有助于阅读Spark源码,加深对Spark原理及应用的理解。
2)考纲解析内容有限,要对照考纲动手整理笔记。
3) 学习的目的是应用,不只是考试,每一章节都应寻找相关练习,动手操作,做到每一部分代码至少码三遍。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
备考福利
好了以上就是四门职业资格认证的备考介绍,接下来给大家重磅推出考试学习资源:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31