在翻译sklearn文档 2.无监督学习 部分过程中,发现协方差矩阵几乎贯穿整个章节,但sklearn指导手册把协方差部分放在了这一章节偏后的部分,作为机器学习一个基础概念,在这篇文章中,想把协方差矩阵的相关知识以及主要应用。
统计学中常用平均值,方差,标准差等描述数据。平均值描述了样本集合的中间点;方差总是一个非负数,当随机变量的可能值集中在数学期望的附近时,方差较小; 反之, 则方差较大。所以, 由方差的大小可以推断随机变量分布的分散程度, 方差能反映随机变量的一切可能值在数学期望周围的分散程度。标准差描述了各个样本点到均值的距离的平均值。但这些统计量都是针对一维数据的计算,在处理高维数据时,便可以采用协方差来查看数据集中的一些规律。协方差来度量两个随机变量关系的统计量,它描述的意义是:如果结果为正值,则说明两者是正相关的,否则是负相关的。需要注意的是,协方差是计算不同特征之间的统计量,不是不同样本之间的统计量。
协方差公式:
设n个随机向量:
从公式上看,协方差是两个变量与自身期望做差再相乘, 然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同, 此时,两个变量之间的协方差取正值。反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。下面根据举一个例子来对协方差形象的解释:
协方差矩阵是实对称矩阵,实对称矩阵的性质:
协方差矩阵中的对角线元素表示方差, 非对角线元素表示随机向量 X 的不同分量之 问的协方差. 协方差一定程度上体现了相关性, 因而可作为刻画不同分 量之间相关性的一个评判量。若不同分量之问的相关性越小,则 非对角线元素的值就越小。特别地, 若不同分量彼此不相关, 那么 C 就变成了一个对角阵。注意, 我们并不能得到协方差矩阵 $C(X)$ 的真实值, 只能根据所提供的 X 的样本数据对其进行近似估计。因此, 这样计算得到的协方差矩阵是依赖于样本数据的, 通常提供的样本数目越多 , 样本在总体中的覆盖面就越广。
理解协方差矩阵的关键就在于牢记它计算的是不同维度之间的协方差,而不是不同样本之间,拿到一个样本矩阵,我们最先要明确的就是一行是一个样本还是一个维度,心中明确这个整个计算过程就会顺流而下,这么一来就不会迷茫了。其实还有一个更简单的容易记还不容易出错的方法:协方差矩阵一定是一个对称的方阵,
有时候由于种种原因,并不使用全部的样本数据计算协方差矩阵,而是利用部分样本数据计算,这时候就要考虑利用部分样本计算得到的协方差矩阵是否和真实的协方差矩阵相同或者近似。
当提供的样本数目相对于特征数足够多时,利用最大似然估计(或者称为经验协方差)计算的结果,可以认为是协方差矩阵的几个近似结果。这种情况下,会假设数据的分布符合一个多元正太分布,数据的概率密度函数中是包含协方差矩阵的,利用最大似然函数,对其进行估计。
在矩阵的求逆过程中, 最大似然估计不是协方差矩阵的特征值的一个很好的估计, 所以从反演得到的精度矩阵是不准确的。 有时,甚至出现因矩阵元素地特性,经验协方差矩阵不能求逆。 为了避免这样的反演问题,引入了经验协方差矩阵的一种变换方式,收缩协方差。
PCA的本质其实就是对角化协方差矩阵。PCA的目的就是“降噪”和“去冗余”。“降噪”的目的就是使保留下来的维度间的相关性尽可能小,而“去冗余”的目的就是使保留下来的维度含有的“能量”即方差尽可能大。那首先的首先,我们得需要知道各维度间的相关性以及个维度上的方差啊!那有什么数据结构能同时表现不同维度间的相关性以及各个维度上的方差呢?自然是非协方差矩阵莫属。协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间。协方差矩阵的主对角线上的元素是各个维度上的方差(即能量),其他元素是两两维度间的协方差(即相关性)。我们需要的东西,协方差矩阵都有了。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16