前面小编给大家简单介绍过损失函数,今天给大家继续分享交叉熵损失函数,直接来看干货吧。
一、交叉熵损失函数概念
交叉熵损失函数CrossEntropy Loss,是分类问题中经常使用的一种损失函数。公式为:
接下来了解一下交叉熵:交叉熵Cross Entropy,是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。在信息论中,交叉熵是表示两个概率分布p,q,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,其中,用非真实分布q来表示某个事件发生所需要的平均比特数。
交叉熵的计算方式如下:
交叉熵可在机器学习中作为损失函数,p代表真实标记的分布,q则代表训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是:使用sigmoid函数在梯度下降时,可以避免均方误差损失函数学习速率下降的问题,这是因为学习速率是能够被输出的误差所控制的。
二、交叉熵损失函原理
一般我们学习交叉熵损失函数是在二元分类情况下,就比如逻辑回归「Logistic Regression」、神经网络「Neural Network」等,其真实样本的标签为 [0.1],分别表示负类和正类。模型的最后通常会经过一个 Sigmoid 函数,输出一个概率值,这个概率值反映了预测为正类的可能性:概率越大,可能性越大。
其中s是模型上一层的输出,sigmoid函数有这样的特点:s = 0 时,g(s) = 0.5; s >> 0 时,g ≈ 1.s << 0 时,g ≈ 0.显然,g(s) 将前一级的线性输出映射到[0. 1]之间的数值概率上,这里g(s)就是交叉熵公式中的模型预测输出。
预测输出也就是, Sigmoid 函数的输出,表示当前样本标签为 1 的概率:
y^=P(y=1|x)
那么,当前样本标签为 0 的概率就可以表示为:
1−y^=P(y=0|x)
从极大似然性的角度考虑,将上面两种情况进行整合:
也就是:
当真实样本标签 y = 0 时,上面式子第一项就为 1.概率等式转化为:
P(y=0|x)=1−y^
当真实样本标签 y = 1 时,上面式子第二项就为 1.概率等式转化为:
P(y=1|x)=y^
这两种情况下的概率表达式跟原来的完全相同,只是将两种情况进行了整合。
接下来我们重点看一下整合之后的概率表达式,概率 P(y|x) 越大越好。因为 log 运算并不会影响函数本身的单调性,所以 将log 函数引入P(y|x)。于是就有:
log P(y|x)=log(y^y⋅(1−y^)1−y)=ylog y^+(1−y)log(1−y^)
log P(y|x) 越大越好,反过来说也就是,只需要 log P(y|x) 的负值 -log P(y|x) 越小就可以了。引入损失函数,而且使得 Loss = -log P(y|x)即可。那么就能得到损失函数为:
如果是计算N个样本的总损失函数的情况,则只需要将N个Loss叠加起来
三、交叉熵损失函数的优缺点分析
1.使用逻辑函数得到概率,并结合交叉熵当损失函数时,当模型效果差的时,学习速度较快,模型效果好时,学习速度会变慢。
2.采用了类间竞争机制,比较擅长于学习类间的信息,但是只关心对于正确标签预测概率的准确性,而忽略了其他非正确标签的差异,从而导致学习到的特征比较散。
以上就是小编今天跟大家分享的关于交叉熵损失函数概念和原理的相关介绍,希望对于大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31