作者:刘早起
来源:早起Python
大家好,又到了numpy进阶修炼专题。numpy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将带来20个NumPy经典问题,附赠20段实用代码,拿走就用,建议打开Jupyter Notebook边敲边看!
01数据查找
问:如何获得两个数组之间的相同元素
输入:
import numpy as np import pandas as pd import warnings warnings.filterwarnings("ignore") arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.intersect1d(arr1,arr2)
02数据修改
问:如何从一个数组中删除另一个数组存在的元素
输入:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.setdiff1d(arr1,arr2)
03数据修改
问:如何修改一个数组为只读模式
输入:
arr1 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr1.flags.writeable = False
04数据转换
问:如何将list转为numpy数组
输入:
a = [1,2,3,4,5]
答案:
a = [1,2,3,4,5] np.array(a)
05数据转换
输入:
df = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})
答案:
df.values
06数据分析
输入:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1的平均数为:%s" %np.mean(arr1)) print("arr1的中位数为:%s" %np.median(arr1)) print("arr1的方差为:%s" %np.var(arr1)) print("arr1的标准差为:%s" %np.std(arr1)) print("arr1,arr的相关性矩阵为:%s" %np.cov(arr1,arr2)) print("arr1,arr的协方差矩阵为:%s" %np.corrcoef(arr1,arr2))
07数据抽样
问:如何使用numpy进行概率抽样
arr = np.array([1,2,3,4,5])
输入:
arr = np.array([1,2,3,4,5]) np.random.choice(arr,10,p = [0.1,0.1,0.1,0.1,0.6])
答案:
08数据创建
问:如何为数据创建副本
输入:
arr = np.array([1,2,3,4,5])
答案:
#对副本数据进行修改,不会影响到原始数据 arr = np.array([1,2,3,4,5]) arr1 = arr.copy()
09数据切片
问:如何对数组进行切片
输入:
arr = np.arange(10)
备注:从索引2开始到索引8停止,间隔为2
答案:
arr = np.arange(10) a = slice(2,8,2) arr[a] #等价于arr[2:8:2]
10字符串操作
问:如何使用NumPy操作字符串
输入:
str1 = ['I love'] str2 = [' Python']
答案:
#拼接字符串 str1 = ['I love'] str2 = [' Python'] print(np.char.add(str1,str2)) #大写首字母 str3 = np.char.add(str1,str2) print(np.char.title(str3))
以上就是我总结的NumPy经典20题中的10题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路,下一篇继续给你列出另外10题哈!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29