美国将大数据应用于国际学生能力评估计划(PISA)_数据分析师
大数据是教育产业重塑商业模式,促使政府、商业组织和社会企业家通力合作将实证、创意、资源整合起来成就全民终身教育的基础。因此未来教育界的巨头将是那些能够把学术权威与信息和社交网络的协同效应结合起来的领军者。更为重要的是,这将使人们在运用大数据的基础上进行应用创新。这要求体制上的协同创新,要采取更有进取、更完善的公共政策,来改变目前教育界弊病:工业化的组织模式、官僚的和以应诉导向的工作方式和策略。
这不仅仅是增加教育透明度和公共责任的问题,甚至可以说这不是主要问题。简单地把数据公布于众不能改变学生学习,老师授课和学校运作的模式。信息公开并不能自然而然地引领我们运用大数据改革教育方法。相反这一做法经常造成民众和政府在信息的控制和所有权方面的对立情绪。
运用大数据实现教育产业转型的前提是摒弃我们社会的“只读”模式。透明和合作并举。目前的情况是,坐在大办公楼里一角的某位教育专家制定了规则,成千上百名学生和老师只能遵从,没有人知道这些决定是怎么来的。如果我们能分享数据、培育民间创新和实验、开拓创造性文化,大数据可以实现大范围的信任。难怪世界经济合作与发展组织(OECD)一项关于成人技能的最新调查显示:一个人的读写能力越好,就越容易信任他人。
协同消费就是很好的一个印证。如今,我们与陌生人共享他们的汽车,甚至是房子。协同消费使人人都可以成为小微企业家,其发展驱动力在于建立与陌生人的信任。想想我们在商业世界里的行为,我们在信任他人的基础上提供信息,心甘情愿地交出信用卡数据,和各个商业行业中可信的陌生人建立联系。教育界的数据分享离我们还非常遥远。
但是这应该是我们努力的方向。几年前我们引入了国际学生能力评估计划(PISA),一项针对各国15岁青少年可比较技能的全球调研。PISA提供了大量有关教育质量的数据。PISA计划使公共教育政策的制定更加透明、高效,帮助教育力量的分配重获平衡。在微观层面,仍存有很多质疑:老师认为这是政府又一个想控制他们的问责工具。那我们该做什么?今年我们实施了“我的PISA”项目,将PISA的分析工具分发到学校。现在每个学校可以用它与全球各地相似或完全不同的学校进行比较分析。
突然间原有的状态发生了改变;学校开始使用这些数据。例如,美国弗吉尼亚州费尔法克斯郡的十所学校的校长和老师们围绕第一份报告的结论开始了长达一年的讨论。在当地教育部门(和OECD)的帮助下,他们将开始第二轮分析,进行深入的数据挖掘,更好地了解如何相互类比,并和世界各地的其他学校进行类比。这些校长和老师不再把自己看作全球舞台上的观众,而是合作的队友。换言之,在费尔法克斯郡,大数据正在建立大范围的信任。
英语原文:
Big data is the foundation on which education can reinvent its business model and build the coalition of governments, businesses, and social entrepreneurs that can bring together the evidence, innovation and resources to make lifelong learning a reality for all. So the next educational superpower might be the one that can combine the hierarchy of institutions with the power of collaborative information flows and social networks. More than anything else, this will hinge on getting people to generate innovative applications on top of big data. It’s about the co-creation of governance, about delivering more progressive and better policies than the industrial work organisation and the bureaucratic and litigation-oriented tools and strategies that we are used to in education.
This isn’t just or even mainly about improved transparency and public accountability in education. Throwing education data into the public space does not change the ways in which students learn, teachers teach and schools operate. It does not lead to people doing anything with that data and transforming education in ways that will actually change education practice. On the contrary, it often results simply in adversarial relationships between civil society and government over the control and ownership of information.
The prerequisite for using big data as a catalyst to change education practice is to get out of the “read-only” mode of our societies. It’s about combining transparency with collaboration. The way in which educational institutions often work is that you have a single expert sitting somewhere in a corner who determines the application of rules and regulations affecting hundreds of thousands of students and teachers – and nobody can figure out how those decisions were made. Big data can lead to big trust if we make that data available, train civic innovators, experiment, create a maker culture. It is no surprise that OECD’s new Survey of Adult Skills shows that the more proficient people are in literacy, the more they trust others.
Collaborative consumption provides a great example of this. These days, people share their cars and even their apartments with strangers. Collaborative consumption has made people micro-entrepreneurs – and its driving engine is building trust between strangers. Think about it: in the business world, we have evolved from trusting people to provide information, to willingly handing over credit card data, to connecting trustworthy strangers in all sorts of marketplaces. We are light-years away from that when it comes to data about education.
But here’s how we can get a little closer. Some years ago we created PISA, a global survey that examines the skills of 15-year-olds in ways that are comparable across countries. PISA has created huge amounts of big data about the quality of schooling outcomes. PISA has also helped to change the balance of power in education by making public policy in the field of education more transparent and more efficient. At the micro-level, there were still a lot of sceptics: teachers thought this was just another accountability tool through which governments wanted to control them. So what did we do? This year we put in place a kind of “MyPISA” – PISA-type instruments that we circulated out into the field. Now every school can figure out how it compares with other schools anywhere else in the world, schools that are similar to them or schools that are very different.
Suddenly, the dynamic has changed; schools are beginning to use that data. Ten schools in Fairfax county in Virginia, for example, have started a year-long discussion among principals and teachers based on the results of the first reports. With the help of district offices (and the OECD), they will be conducting secondary analyses to dig deeper into their data and understand how their schools compare with each other and with other schools around the world. Those principals and teachers are beginning to see themselves as teammates – not just spectators – on a global playing field. In other words, in Fairfax county, big data is building big trust.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10