大数据火热,大数据可以改变职业体育。电影《点球成金》告诉我们,数据科学家能解决球队老板用钱解决不了的问题:打造一支冠军球队。“这并不奇怪”,哈佛大学定量社会科学研究院的主任Gary King说,“如果你总结一下那些数据分析能够起到巨大作用的行业的特点,你就会发现,职业体育行业基本具备了这些特点,这也就是为什么数据分析在职业体育中具有如此重要的作用的原因。”文中所说职业体育的特点就是可定量,而大数据则是通过定量的数据比对,来找到解决问题的方法。这一点对于世界第一运动的足球尤为重要,先来说说马云要来搅局的中超。
大数据是有能力帮助提升一个联赛的水平。2004年创立的中超,只是模仿英超取个名字,可是水平不怎么样,但差在什么地方,要从哪些方面来看提升,好像没有太明确的方向。当方向不确定的时候,出现笑话也就再所难免,我们在追求足球风格时,曾经提出了一个莫须有的“欧洲拉丁派”,甚至提出要锻炼 “叉腰肌”,而大数据时代则大不同了。
以前,关于足球的数据统计只有角球、任意球、红黄牌和射门次数,大数据时代,联赛水平的体现有了许多直观的参数,如跑动距离、有效比赛时间、移动轨迹、控球时间、传球次数等等。以跑动距离、有效比赛时间作比即可一分高下,2010年国际足联的相关统计,职业足球运动员全场跑动距离平均为10000米,中超球员为7000米左右;有效比赛时间,2011年中超的实际有效时间为场均49分03秒,韩国联赛为56分09秒,欧冠联赛场均比赛有效时间为62分39秒。
再从大数据的角度来看,2012年和2013年的中超平均跑动距离都是超过万米;有效时间,2012年超过50分钟,2014年的目标是60分钟,中超的水平确实有了提升,要不也不会有场均1.8万人的现场观众,好歹也是亚洲第一,世界第十。
一个联赛的水平,不光体现在竞技水平上,还会体现在对媒体、对球迷的服务上,从这个方面再看大数据对已经高度职业化的NBA的帮助。NBA官方网站之前有内部的统计工具,只有一些授权的媒体可以使用做一些高级的深入数据分析,2012年,NBA与数据分析解决方案公司合作,NBA从得分、进攻、防守、做球等几大类统计了多达90多项技术指标,数据公司帮助处理NBA高达4500万亿条分割的统计数据。
累不累的训练
联赛水平的根基在于日常训练,这一点大家应该没有什么疑义。但这一切没有在大数据时,训练更多地是从精神层面来要求,比如“女排精神”“三从一大”(从难、从严、从实战出发,大运动量),这种口号好提但是具体怎么做却无从下手。
当年流行于中国的12分钟体测,之前一直说是提高运动员的体能,到最后足协官员也承认“无氧耐力法测试的是一种精神力量”。
正是由于训练中长期缺乏数据,尤其是大数据的指导,才会只沦落到精神层面为主导。现在训练中应用大数据的例子,在足球发达国家例子已经很多了,而这两年中超的球队也在注重训练中大数据的使用,广州恒大、山东鲁能、江苏舜天等等。
这套高科技系统对队员们在训练中的心率、速度,距离,加速度和减速度等指标进行记录、分析和监控,监控队员的训练量是否达到或超过相应的指标,同时,也能预防队员在训练中出现的伤病。通过科学的训练方法,对队员们训练提高和预防伤病起到很大的作用。
我们用GPS和心率测量仪来监测每个球员的状态。从体能的角度来说,最显著的数据是冲刺数量、冲刺距离和每个球员投入的高强度运动次数。我们这样监测一整个赛季下来,就能知道一个球员目前状态是否疲劳,以及他需要多久的休息时间。
说完了团体运动的足球,再来看看更侧重于个人的速度滑冰,虽然它不是那么的职业化,但是这种更强调个人技巧的运动,大数据对其的作用更大。
之后,人们从数据方面分析,发现韩国队的拐弯时候,速度比其他国家的要快。通过这个大数据的分析,再结合慢镜头,人们发现了韩国队的先进技术:在过弯时,通过身体重点心转移,步点的转换,达到一个不减速的效果,甚至还可以加速。
大数据已经很大程度上影响到职业体育的水平,另一方面,对于职业体育来说,所从事的运动不同对于大数据有不同的应用需求,例如,足球和篮球所遇到的大数据问题是不一样的,团体与个人的运动又会是大不同。海量数据处理的复杂性,对数据中心的计算能力提出了挑战,英特尔就正利用自己在计算领域长久的积累,从支撑计算的芯片产品,到实现分析的解决方案,在职业体育上发挥着不可替代的作用。 好教练难求,但是经过计算和处理的多维度的数据却是可以普及和借鉴的。大数据改变职业体育,并赋予职业体育全新的商业价值,并非一件遥不可及的事。
当然大数据也有其局限性,埃弗顿主教练马丁内斯和他的球探里弗斯和布朗都认为“光凭数据就能买进某个球员”这种想法是十分荒谬的,博尔顿的分析研究总监布莱恩·普莱斯迪奇甚至举出了一个反例:自从他们的守门员开始研究对方的点球手的数据以后,他的扑点球效率反而降低了,过去两个赛季只有9%的成功率。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21