很少有商界人士,乃至是高级管理人士,能够真正理解大数据是什么样的一种革命性的力量,或大数据对于各类企业来说所代表的破坏性威胁。
大数据所带来的比以往任何时候都能够对客户的生活、习惯和愿望了解更多的前景预期,无疑令人兴奋不已。然而抛却这所有的兴奋,我们不应该忘记的是,很少有商界人士,乃至是高级管理人士,能够真正理解大数据是什么样的一种革命性的力量,或大数据对于各类企业来说所代表的破坏性威胁。
当你准备对大数据所带来的所有的光鲜机遇大加利用时,别忘了,存在于大数据中的魔鬼可能会出现在以下这些被忽视的细节之中:
一、数据保全
对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁,就是那种一直困扰塔吉特、家得宝和摩根大通这样的大规模安全泄露。在过去的几年里,数以百计的其他公司也都曾经历过类似的数据泄露,全都是因为侵入企业数据库的人一直以来都比试图保全企业数据库免受数据泄露的人更加机智、更加坚持。
【解决方案】
大数据时代更好的安全,意味着保证所需基础设施和人员的长期投资,以保护这种快速成为每个组织更重要的资产,即其客户数据。
二、数据泛滥
大数据不仅仅是更多的信息,而是成倍增长的来自四面八方的巨大海量信息。淹没在所有这些数据之中的可能性是真实存在的。因在无关的数据海洋中艰难跋涉而浪费很多时间、精力和资源的可能性同样也是真实存在的。未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不受到的沉痛教训是,太多无用的信息造成的信息不足或信息不匹配。
【解决方案】
尝试尽可能地使数据类型具体化,将会有益于对数据的了解。数据本身正在变得更加细化,所以对于数据的筛选也同样需要做得更加精致。缩小数据的聚焦范围。定义数据的相关参数。别忘了问自己一下这个浅显的问题:如果你可以与客户实时沟通,那他们在你的品牌和其他品牌之时做选择时,你会对他们说什么?如何说?
三、别自以为聪明
自从有了大数据,对于一些人来说,很容易就会有针对别人哪怕是最老牌的企业发起竞争性挑战的想法。大数据将展现出别人能够轻易利用的竞争格局中差距。任何人只要敢于尝试,即使不存在竞争威胁,也有可能成为潜在的竞争威胁。
【解决方案】
无论多大的组织,系统都需要像小组织或初创组织那样,时刻保持至少部分组织运行之中。更多的精力需求投入到市场调研、竞争情报、互联网侦察活动中去,因为变化迅速而持续,竞争威胁可能会从任何地方、任何时间袭来,而造成巨大的伤害。
四、数据管理
在大数据的消费者方面,公司在未来几年将会处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门实际优势的前提下更透明地沟通的公司将更具竞争优势。
【解决方案】
数据管理对每个人来说都是一个挑战,但最大的挑战,是找到有经验且受过满足公司所需必要训练的人,尤其是在数据增长中。针对数据管理人员的高级教育和培训将会付出巨额的成本,即使现在看来是一种不必要的开销。
五、听从机器做决定
随着组织的发展,各部门之间的壁垒被打破,数据分析成为一项日益重要的业务流程,不可避免地就会有一段时间的数据显示需要做出重大改变。随着越来越多的决策来自于数据驱动的分析,对于人最艰难的事情之一,就是让机器做决定。不幸的是,决定可能是重要的,而机器可能是正确的。
【解决方案】
听从数据所告诉你的,并尝试尽可能明智地使用它。不要放弃你的直觉,而是要使用所有可用的信息做出发自内心的决定。否则,你的内心可能会背叛你。
六、处理即时不满
与客户保持亲密人际关系的缺点之一,就是如何和那些气愤和不满意的客户保持亲密的人际关系。如今的时代,每个客户都有一大把的手段可以让全世界都知道他们有多不满意,而且他们乐于使用这种时代的力量。一个愤怒的客户可以给组织带来莫大的伤害。
【解决方案】
响应能力是客户服务一如既往的关键之所在,对于每一个心怀不满的客户,只要有正确的响应,都可以将其转换成品牌的拥护者。幸运的是,允许客户产生不满的同等机制,也或多或少的可以允许公司用来解决即时问题。响应越及时,对每个人都越有好处。
|
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28