扒一扒,这些年大数据的那些事儿
如今,不管是学术圈还是IT圈,只要能谈论点儿大数据就显得很高大上。然而,大数据挖掘、大数据分析、大数据营销等等事情仅仅只是个开始,对大多数公司来说,大数据仍有很强的神秘色彩。当然,也有很多人直接批判大数据或大数据营销给我们造成的隐私威胁。也有很多人根本没有搞清楚什么是大数据,到底有什么价值。
于是,站在客观的角度,围绕下面几个问题与大家分享有关大数据的几个观点,也扒扒大数据的那些事儿:
1、大数据营销和个人隐私泄露究竟有无因果和逻辑关系?
2、大数据营销到底能带给企业什么样的价值?到底能带给用户什么价值?用户是否全盘否定或反感大数据营销?
3、如何正确看待大数据?如何看待大数据和传统调查方法或统计学的关系?
4、大数据营销究竟面临什么样的挑战?
一、大数据的迅猛发展与数据隐私的忧虑相伴而生
社交媒体的出现,让用户数据的分享数量达到了难以估量的程度。而如今,社交媒体的种类有增无减,智能手机的更大普及,又让更多用户转移到移动互联网,从而又进一步贡献更多数据和内容。
一边是社交媒体因为大数据的盆钵满载,另一方面则是用户不断毫无保留的将个人信息交给互联网,这些信息包括年龄、性别、地域、生活状态、态度、行踪、兴趣爱好、消费行为、健康状况甚至是性取向等。一时间,针对海量用户信息的大数据挖掘、大数据分析、大数据精准营销、广告精准投放等等迅速被各大公司提上日程。
二、大数据营销和个人隐私泄露之间不能完全划等号!逻辑关系不成立
如果客观的分析一下上述问题就会发现,这是一个难以分说的鸡生蛋还是蛋生鸡的问题。一味地批判大数据分析对个人用户数据的泄露或滥用是不客观的。
因为,社交媒体的本质在于分享和传播,社交媒体的出现的确满足了人们分享个人信息、晒各种数据的欲望,让人们在过去无声无息的生活中突然转移到了可以让全世界看到自己的平台上来。人们从而达到了内心的满足感和存在感。
三、大数据营销究竟会给企业和用户带来什么价值?
讨论完上面的问题之后,我们是否应该诚恳对待大数据精准营销这件事?那么大数据营销究竟对于企业和用户两方面来说,都有什么样的价值?
1、对于企业的价值
让我们先看一个国外案例:
我们都知道美剧《纸牌屋》,提到《纸牌屋》的成功,最大的功劳便是大数据分析。因此,《纸牌屋》几乎成了大数据营销的经典案例,也是美国Netflix公司基于用户信息挖掘来决定内容生产的成功尝试。
再看一个国内案例:
我们都知道阿里巴巴和新浪微博合作的事情,阿里巴巴斥资5.86亿入股新浪微博。除了网络上各大媒体分析的,认为阿里巴巴希望打造生态圈、强化流量入口、挑战腾讯等等原因之外,还有一个重要原因或许就是大数据营销的战略。
2、对于用户的价值
上述两个例子说的都是大数据带给企业的价值,那么,大数据营销对于用户来说,到底有没有价值?用户是否十分反感精准营销?让我们再来看看一个新的调查数据结果表明,大数据精准营销并不是完全都会让用户反感,而是看你猜透用户心思的程度。
四、大数据分析或大数据营销面临的真正挑战是什么?
1、数据冗余问题,有没有必要用这么多数据?
数据源问题,数据质量有无保障,是否是真正所需?
大数据分析一直被人称颂的优点就是:海量数据的运用。但是,数据是不是越多越好?如何筛选这些数据?如何找到有价值和有用的数据?数据的庞大和冗余会对大数据分析造成什么样的影响?
对于大数据而言,巨量的数据来源是分析准确性的根本保证。但是,数据量大到一定程度后也面临着很大问题:想要保证准确度就变的困难了。这样就难以保障分析结果的准确性了。大数据分析和预测失败的例子也有很多。
2、大佬平台的游戏,普通企业难掌握大量数据;难检验可信性
各大互联网公司平台掌握着用户资源,用户产生的信息当然也被聚集在各平台内。但是,各家公司或平台的数据并不会完全向公众开放。我们只能通过某些工具抓取到网络上散落的信息,但不能准确掌握完整的有实际价值和意义的后台数据和信息。
另外,目前大数据分析的算法还没有标准,也没有公认和统一有效的工具。
所以,从以上这些方面看,大数据分析和大数据营销还有很长的路要走。我们需要正确、理性地看待大数据。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21