数据的重要性已经被越来越多的公司、个人所熟知与接受,甚至于有过犹不及之势头。大数据的概念满天飞,似乎一夜之间人人都在谈论大数据,见了面不用大数据打招呼,好像就不是在数据圈子里混的了。那么,被外界传得神乎其神的数据,到底可以在哪些方面促进业务的腾飞?或者换种说法,业务对数据有哪些层次的需求?数据在哪些地方能够帮助业务?
结合笔者多年的工作经验以及对数据与业务的理解,业务对数据的需求归纳为四个层次。
第一层:知其然
我们可以通过建立数据监控体系,掌握发生了什么、程度如何,做到“知其然”。
具体来说,切入数据的角度主要有这几个方面。首先是“观天”,观察行业整体趋势、政策环境影响;再是“知地”,了解竞争对手的表现;最后是“自省”,自身做得怎么样了,自己的数据表现怎么样。从看数据的周期上来讲,“观天”可以是季度性或者更长的周期;“知地”按周或者月,特殊时间点、特殊事件情况下除外;“自省”类的数据拿到的是最全面的,需要天天看,专门有人看,有人研究。
在这一层上,分享两个看数据的观点:
1.数据是散的,看数据需要有框架。
怎么看数据很有讲究。零碎的数据很难发挥出真正的价值,把数据放到一个有效的框架里,才能发挥整体价值。所谓有效的框架至少包含两重作用:
(1)数据很多,不同人对数据需求不一样,如CEO、中层管理者、底层员工关注的数据通常是不一样的,有效的框架能够让不同的人各取所需。
(2)有效的框架能够快速地定位问题所在。举个例子,交易量指标大家都关心,如果某一天交易量指标掉了20%,那么,业务很大可能下是出了问题,但问题到底出在哪儿呢?如果只有几个高度抽象的指标,如转化率、成交人数、客单价等,是定位不到问题的。好的框架能够支持我们往下钻,从品类、流量渠道等找到问题所在,板子也就能打到具体的负责人身上了。这也是我们通常所说的,看数据要落地。
2.数据,有比较才有真相。
我有120斤,你说是重还是轻呢?一个孤零零的数据是很难说明问题的。判断某个指标增长快慢,需要选择正确的比较对象、参考系,也就是基准线。这个基准线可以是一个预先设定的目标,可以是同行业平均水平,也可以是历史的同期数据。
第二层:知其所以然
通过数据看到了问题,走到这一步还不够。数据只是表象,是用来发现、描述问题的,实操中解决问题更重要。数据结合业务,找到数据表象背后的真正原因,解决之。解决问题的过程就会涉及数据、数据加工,还可能会涉及数据模型之类的方法或者是工具,这里面技术含量比较高,另作篇幅介绍,这里不展开了。
在第二层里也有两点分享:
1.数据是客观的,但对数据的解读则可能带有很强的主观意识。
数据本身是客观的,但消费数据的是有主观能动性的人。大家往往在解读数据的时候带入主观因素:同样一个数据在A看来结论可能是好的,从B看来可能却得出截然相反的结果。不是说出现这样的情况不好,真理越辩越明。但假如不是通过数据找问题,而是先对问题定性,然后有选择地利用数据证明自己的观点,这种做法就不可取了。可事实上,我们的身边经常发生这样的事情。
2.懂业务才能真正懂数据。
车品觉老师的博文《不懂商业就别谈数据》对这个观点作了深刻阐述,这里不展开讲了。只是由于本观点的重要性,笔者特意拿出来做一下强调。
第三层:发现机会
利用数据可以帮助业务发现机会。举个例子:淘宝上有中老年服装细分市场,有大码女装市场,这些市场可以通过对周边环境的感知,了解到我们身边有一些中老年人或者胖MM在淘宝上面没有得到需求的满足。那么还有没有其他的渠道找到更多的细分市场呢?
数据可以!
通过用户搜索的关键词与实际成交的数据比较,发现有很多需求并没有被很好地满足,反映出需求旺盛,但供给不足。假如发现了这样的细分市场,公布出来给行业小二,公布出来给卖家,是不是可以帮助大家更好地去服务消费者呢?这个例子就是现在我们在做的“潜力细分市场发现”项目。
讲这个案例,不是想吹牛数据有多厉害,而是想告诉大家:数据就在那里,有些人熟视无睹,但有些人却可以从中挖出“宝贝”来。差异是什么呢?商业感觉。刚刚提到的搜索数据、成交数据很多人都能够看到,但以前没有人把这两份数据联系在一起看,这背后体现出的就是商业感觉。
第四层:建立数据化运营体系
我理解的数据化运营,包含了两重意思:数据作为间接生产力和直接生产力。
1.数据作为间接生产力。
所谓间接生产力,是指数据工作者将数据价值通过运营传递给消费者,即通常所说的决策支持,数据工作者产出报表、分析报告等供各级业务决策者参考。我称之为决策支持1.0模式。然而随着业务开拓和业务人员对数据重要性理解的增强,对数据的需求会如雨后春笋般冒出来,显然单单依赖人数不多的分析师是满足不了的。授人以鱼不如授人以渔,让运营、产品的同学都能够进行数据分析,是我脑子中的决策支持2.0模式。
决策支持2.0模式有三个关键词:产品、能力、意愿。
让运营和PD掌握SQL这类取数语言,掌握SAS、SPSS这类分析工作,显得不大现实和必要。提供低门槛、用户体验良好的数据产品是实现决策支持2.0模式的基础。这里讲的产品,不仅仅是操作功能集,还需要承载分析思路和实际案例。
但是,数据分析的门槛始终是存在的。这就对运营和PD提出了新的基本能力要求,即基础的数学能力、逻辑思考能力和学习能力。
最后一个意愿,也许是最关键的,只有内心有强烈的驱动,想做好这件事情的时候,才有可能做好。
2.数据作为直接生产力。
所谓直接生产力,是指数据工作者将数据价值直接通过前台产品作用于消费者。时髦点讲,叫数据变现。随着大数据时代的到来,公司管理层越来越重视这一点。大数据时代带来了大的机会,但也可能是大灾难。如果不能利用数据产生价值,那么,它就是一个灾难——产生的数据越多,存储的空间、浪费的资源就越多。
现在比较好理解的一个应用就是关联推荐, 你买了一个商品之后,给你推荐一个最有可能再买的商品。个性化是数据作为直接生产力的新浪潮,这个浪潮已经越来越近。数据工作者们,做好迎接的准备吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31