制造业在大数据时代迎来新的发展机遇
集装箱拖车的轮子太多也太大了,因此对于货运公司来说,监测这些重型卡车轮胎的磨损情况,并且为其维护和更换轮胎,是一项相当艰巨的工作。
如果货运公司能把所有这些麻烦转移给轮胎制造商,情况会怎么样呢?轮胎上可以配置很多小型传感器,自动对轮胎进行监测,并将情况实时回传给制造商。而轮胎制造商在了解了每个轮胎的情况后,就可以定期安排轮胎的更换和维护了。
如此一来,对货运公司而言,运输里程增加了,安全性改善了,责任降低了,对数千个轮胎进行维护的流程得到了简化,甚至被彻底取消。在另一边,轮胎制造商接手了这些工作,也接手了安全风险,但也将从中获得回报——现在,制造商不只是在销售轮胎,更是在销售行驶里程。
这只是关于数据如何转变制造业的一个实例。如今,技术市场上还有很多人在四处炒作大数据和物联网的概念;但事实上,越来越强大的传感器和各类设备通过与后台系统、分析软件和云的连接,已经为各行各业带来了深刻的变革。随着这些联网运行方式的普及,制造业不仅得到了实现自动化和创造效率的全新手段,其管理层更注意到了利润增长前景光明的全新增长点——服务。
这一趋势不可逆转。根据微软委托IDC进行的一项最新研究,制造业在未来四年内从数据中获得的价值将高达3710亿美元。通过更好地利用数据,他们不仅可以提高生产效率、精简流程,还可以更好地管理客户关系,改善产品和服务。美国总统奥巴马最近宣布联邦政府将拨款1.4亿美元支持两家新设机构,正是因为它们能帮助企业收获不断增长的“数据红利”。而在长期以来一直被视为欧洲制造中心的德国,他们将这种新潮流称为工业4.0 ——其意义完全不亚于第四次工业革命。
对美国、德国,以及世界上其它所有国家而言,这一变革的第一阶段,首先是要从不断增长的海量数据中发掘效率,将生产车间与后台的IT技术连接起来,构成一个完整的“智能系统”。这种方式能够帮助制造商从生产流程中压缩成本,从而减轻发达经济体的压力,令其能够以更低的生产成本去更好地参与全球市场竞争。
每个人都希望生产线更精简、更高效,其实从许多方面来看,利用数据洞察来提升生产效率是最触手可及的办法。下一波机会就在于运用这些洞察,在供应链和需求链中构建效率,获取价值。诚然,要共享敏感业务数据是个挑战,但对大多数公司和企业来说,其回报将大于风险。
这一趋势已经改变了制造商看待自己及客户关系的方式。汽车的演进就是一个生动的例子。汽车的技术含量已经成为影响顾客购买决策的重要因素,并促使汽车厂商重新思考其与客户之间的关系。过去,这种关系基本上在交钱开票之后就结束了;而今天,汽车制造商已经变身成为科学技术的供应商。管理客户的售后体验、在汽车保有周期内为客户提供丰富、持续的在线服务,已变得与传统的生产销售工作同等、甚至更加重要。
在恰当的时间捕获恰当的数据,然后传送给企业内部恰当的人——这种通常被称为“数据民主”的处理方式,将是改变游戏规则的关键。一旦制造商透过各种设备、流程、人员和外部网络将分散的数据连接起来,数据就能进化成洞察。从此,制造商可以主动向客户发送备件和更新,安排维修事宜,预测存货需求和费用,而且这些工作的准确性将大大提高。而在过去,这些客户相关的工作往往需要耗费大量的人力、物力,并总会产生很多麻烦。
数据能通过释放制造业业务流程中的智能,去提升运营效率。而对于那些不仅想要节约成本、更希望能增加收入的制造商来说,服务,作为可持续的新收入来源,其吸引力要远远超过单纯销售装置或设备。可以将其想象成是在销售订阅服务,而不单单是卖一本杂志,或者是从远在意大利的总部为安装在纽约的设备提供服务。
要真正走上这条变革之路,制造商要做出一系列的抉择,而其中最重要的,就是选择真正有实力的技术合作伙伴。彼此间的信任、员工对应用软件的熟悉程度、对行业知识的掌握、用以连接设备生成数据的智能且安全的云服务、跨设备和服务的可扩充的大数据云平台、互操作能力、丰富的合作伙伴生态系统——上述这些还仅仅是制造商在选择迈进第四次工业革命时,应该用来评估合作伙伴技术能力的部分指标。
在这个普适计算日渐成型的世界中,拥抱数据文化的企业和单位必将获得巨大的潜在回报。尽管未来无法预测,但这一潜力所带来的诱惑,已经在制造业激起了新波的创新浪潮。现在,摆在制造商面前的只有一个问题——去引领这个潮流,抑或任凭自己被浪潮所吞没。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31