京公网安备 11010802034615号
经营许可证编号:京B2-20210330
b. 使用说明
PROC ANOVA 语句的选项主要有:
DATA=数据集名 指明要分析的SAS数据集,缺省时SAS将使用最近建立的
数据集.OUTSTAT=输出数据集 指定分析计算结果输出的数据集名.
CLASS语句指明分类变量,是ANOVA过程的必需语句,并且必须出现在MODEL语句之前. 分类变量可以为数值型或字符型,分类变量的个数表示方差分析的因素个数.
MODEL语句定义分析所用的效应模型,即方差分析的因变量和效应变量. 在方差分析过程中,关键在于定义线性数学模型,常用的模型定义语句有:
MODEL y=a 单因素一元方差分析
MODEL y=a b 双因素无交互作用一元方差分析
MODEL y=a b a*b 双因素有交互作用一元方差分析
MEANS语句用来计算该语句所列的每个效应所对应的因变量均值,其选项用于设定多重比较的方法.
GLM 即广义线性模型(General Liner Model)过程,对于非平衡数据,应采用GLM过程.它使用最小二乘法对数据拟合广义线性模型. 该过程功能强大,数据分析师可用于多种不同的统计分析中. GLM过程用于方差分析时,主要语句和使用格式与上述ANOVA过程类似 .
2. 应用实例
一个工厂用三种不同的工艺生产某种电池. 从三种工艺生产的电池中分别抽取5个样品,测得样品寿命的数据如下(单位小时):
|
|
工艺1 | 工艺2 | 工艺3 |
| 1 | 40 | 26 | 39 |
| 2 | 46 | 34 | 40 |
| 3 | 38 | 30 | 43 |
| 4 | 42 | 28 | 48 |
| 5 | 44 | 30 | 44 |
我们"数据分析师"要研究的指标是电池的寿命,工艺是影响寿命的一个因素,三种工艺分别是该因素的三个水平. 在试验中我们假设其它因素都处于相同的状态. 这里我们"数据分析师"希望利用上面得到的数据来考察“工艺”的不同是否对“寿命”这个指标有影响?
sas 输入过程
Data exam;
Do I=1 to 5; /*每个处理下5次重复*/
Input x@@;
Output;
End;
End;
Cards;
40 46 38 42 44
26 34 30 28 32
39 40 43 48 50
;
Procanova; /*调用方差分析过程*/
Class trt; /*定义处理为分类变量*/
Model x=trt; /*定义效应模型*/
Title '方差分析';
Run;
sas 结果输出
Analysis of Variance Procedure
Dependent Variable: X
Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 573.33333333 286.66666667 19.77 0.0002
Error 12 174.00000000 14.50000000
CT 14 747.33333333
R-Square C.V. Root MSE X Mean
0.767172 9.847982 3.80788655 38.66666667
以上结果相当于方差分析表, F值为19.77,显著性水平为0.0002,小于0.01,说明各处理间的均值差异极显著.
注:GLM过程与ANOVA应用过程类似,GLM过程中可以进行回归分析、方差分析、协方差分析、剂量反应模型分析、多元方差分析和偏相关分析等等,其功能之强大可见一斑。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01