大数据就在身边 游戏也能用到大数据_数据分析师考试
大数据其实核心不是大,而是全数据,是将你各种行为的数据汇总在一起,从而能通过数据看到你完整行为轨迹,进行分析。在日常生活中,比如买衣服,你看了什么衣服,试穿了什么衣服,你重复去买衣服,这些信息商家都是不知道的,而商家的建设就是要全,比如优衣库做的你去试衣服的时候会进行记录,比如很多商家做会员卡,也能起到收集这个信息的目的。
而一个日志建设比较完善的游戏,是可以看到几乎全部有价值的行为的,你做的每一件事都可以拿来分析,而大数据,正是靠这种数据的全,来达成有价值的分析。
2.但是,游戏行业目前能做的绝大多数据分析,其实跟大数据没有任何关系。
我做数据分析,和教数据分析的方法,是像游戏策划一样理解游戏,然后用excel分析。只要懂加减乘除,集合这些概念,最多用一点线性相关,和聚类分析。但是核心是懂游戏。
以前我自己用这套方法的时候还不确定是不是因为我太菜了所以只能用这套方法,后来自己招人建设数据分析中心的时候,面试了很多人,年薪30W在top端游公司的,年薪25W在著名手游公司的,年薪25W带一个3-5人团队的。他们都是用数据挖掘之类的方法做,但是谈到具体做过什么帮助游戏改进的案例,都讲不出什么。其中有一个我以前认识,多聊了两句,他也觉得自己用建模,挖掘这样的办法,适合在有大量游戏的公司,对所有游戏做一些通用的东西,起到一些帮助(这件事的关键是游戏项目组要有足够的数据意识,否则没法配合),而在单个游戏的改进上,确实起不到多大作用。
数据挖掘之类的方法在游戏项目中少有有效应用,核心原因还是单个游戏都太小,用不起很专业的。用数据挖掘最好的应该是电商这种行业,比如亚马逊,因为他们的分析是针对整个公司的,整个公司的销售额都会受到数据的影响,比如亚马逊。而游戏方面,单个游戏年收入5亿以上的才有几个?这些做到高收入的游戏,他们会觉得我不是靠数据做到今天的,我也没必要去投入做数据挖掘(毕竟这种游戏有那么多事情需要投入,动不动就百人团队)。所以针对单个游戏有效的大数据研究方法,目前还几乎没有。
3.数据挖掘目前在游戏行业能做什么?——流失预测
这是我看过唯一一个案例,是数据挖掘在游戏行业很好的应用,但潜力还没有被充分挖掘出来。我见过大公司做的最好的,能达到80%准确率:80%的流失用户被预测到了,80%被预测到的用户真的流失了。也见过能做到60-70%的。这种分析真的是大数据的思路,他不需要理解游戏,只要把足够多的数据放进去,就能预测流失。反倒是从策划角度经过规划的数据,基本是不可能准确预测流失的(面试到讲这条路的,就直接pass了。做过流失预测自己根本不知道准确率多少的也直接pass了)。
说潜力没有挖掘出来,因为这个分析的目的和传统游戏数据分析不同,不是改进游戏,而是运营干涉。发现这些用户快要流失,就想办法给他们好处,留住他们。但是大部分游戏的框架并不允许做这件事,而没有足够数据训练的游戏项目组,也很难配合起来。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28