上海的便利店数据分析支持系统建设_数据分析师培训
1999年06月可的导入了海鼎HDPOS商品管理信息系统,实现商品流程的系统管理。随着商品业务数据的积累,利用这些数据为商品业务决策服务的需求非常自然的就产生了。虽然HDPOS系统本身带有功能非常强大的报表查询功能,但管理人员发现他们即使有这个查询工具也很难得到满足他们需要的信息和数据。在1999年10月,数据分析岗位设立,第一名数据人员上岗。于是管理人员除了直接从HDPOS系统的报表工具获取信息外,还依赖于数据分析人员。
HDPOS系统实质是面向业务操作的,商品运作和业务流程被表示为单据的流转,业务规则被系统统一为单据的操作规则,显然系统中数据的格式和储存必须首先满足单据操作规则。查询工具较好地解决了,以单据类型为中心面向操作人员的报表。而以问题为中心面向管理人员的报表,查询工具较难解决。问题的根源在查询工具面对的数据,而不是查询工具本身,通过查询工具的改进,还是不能根本解决管理人员的需求。
管理人员本来希望通过与业务系统的直接交互来得到数据和信息,现实是要通过数据分析人员与业务系统交互。数据分析工作对企业的重要性日益体现,2001年数据分析部门数据分析室成立,数据分析人员增加。
1.建设数据仓库
数据分析人员发现他必须首先对HDPOS系统数据库中的数据作加工,才能快速和正确相应管理人员的需求。在明确了解管理人员的问题,即分析和决策主题,对数据加工过程和规则掌握后,2001年数据分析部门开始构建面向分析和决策的数据仓库。
数据仓库的硬件是一台空间为150G的服务器,操作系统是win2000server,由于是数据分析人员自己构建,数据仓库选择了SQL2000。
1.1 数据粒度和事实表
在可的便利,分析数据中最常见的数据粒度是时间按月,业务单元到门店,商品单位到商品代码。在业务数据库(HDPOS)中,单据数据的时间是精确到秒的,部分单据业务单元是到门店下属的仓位。 在数据仓库中,储存了从2000年01月以后数据粒度为(月、店、单品)的销售、进货、配货、库存数据,这些数据都有数量、售价金额、去税售价金额、成本金额、去税成本金额五个值。并对配货和进货数据进行了统一处理,因为进货和配货有多种流程和单据。
在数据仓库中,储存了最近13个月的数据粒度为(日、店、单品)的销售、进货、配货数据
。 在数据仓库中,储存了指定日期的数据粒度为(时段、店、单品)的销售流水数据。
为满足预算和业绩管理,数据仓库中统一储存了各部门的预算和业绩考核数据。数据仓库还储存了来自于财务和发展部门的其他数据。
1.2维度数据
分析的水平、深度、和广度取决于维度数据,维度越多对fact数据的认识就越深刻。维度数据处理来源很多,是企业管理经验和数据的提练
商品的维度重要的有: 按分类体系 按商圈 按重要程度 按规格(部分商品) 按毛利率
门店的维度重要的有: 按组织体系 按单店水平 按地域分布 按产权属性 此外,还有关于供应商和业务人员的维度。
1.3 数据加工
数据仓库建在SQL2000上,于是使用SQL2000的数据转换功能,将数据抽取、清洗、整理的规则写成数据转换报。 月度数据和来自业务系统之外的数据加工,通过人工触发数据转换包实现。月度数据是在每月财务结算完毕后处理,外系统数据在收到数据后处理。
日事实数据和维度数据加工,通过SQL2000的作业机制,按时间规则每日自动调用数据转换报实现。首先清除数据仓库中最后六日的数据,然后导入最新七日的数据,通过这样的规则来保障数据仓库与业务数据库数据的一致性。 时段数据的加工,按需要的日期触发数据转换包实现。1. 4分析服务器使用SQL2000的Analysis Service作为OLAP服务器,将数据仓库中的数据加工成多维数据集(cube)。
目前仅使用数据仓库中的月度事实数据和时段事实数据来建立cube。
2.报表服务器和前端工具
报表服务器和前端界面工具均使用微软的EXCEL。
2.1 报表服务器
在服务器上安装excel软件,数据分析软件将报表逻辑用VBA写入excel文件中。利用window操作系统计划任务功能自动打开excel,执行VBA脚本。自动完成与数据仓库连结,制作多维数据透视表,将报表文件通过电子邮件发送到指定用户。
有了这个框架,分析报表体系就表现为excel文件的集合,每个多维数据透视表的excel文件针对一个管理主题。
2003年企业建成HDINTRA办公系统后,用户还通过浏览器以公文方式接收excel报表文件。报表服务器自动将excel报表文件上传到HDINTRA的ftp服务器。实现了数据分析系统与办公系统的集成。
2.2前端工具
用户收到excel数据文件后,打开后就可使用。Excel是标准的工具,现在管理人员都具有一定基础。操作上只需对管理人员进行多维数据透视表的使用。
3.数据分析人员
数据分析人员既是业务专家,又是信息系统专家,但首先必须是业务专家,尤其是企业内部的数据分析人员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31