上海的便利店数据分析支持系统建设_数据分析师培训
1999年06月可的导入了海鼎HDPOS商品管理信息系统,实现商品流程的系统管理。随着商品业务数据的积累,利用这些数据为商品业务决策服务的需求非常自然的就产生了。虽然HDPOS系统本身带有功能非常强大的报表查询功能,但管理人员发现他们即使有这个查询工具也很难得到满足他们需要的信息和数据。在1999年10月,数据分析岗位设立,第一名数据人员上岗。于是管理人员除了直接从HDPOS系统的报表工具获取信息外,还依赖于数据分析人员。
HDPOS系统实质是面向业务操作的,商品运作和业务流程被表示为单据的流转,业务规则被系统统一为单据的操作规则,显然系统中数据的格式和储存必须首先满足单据操作规则。查询工具较好地解决了,以单据类型为中心面向操作人员的报表。而以问题为中心面向管理人员的报表,查询工具较难解决。问题的根源在查询工具面对的数据,而不是查询工具本身,通过查询工具的改进,还是不能根本解决管理人员的需求。
管理人员本来希望通过与业务系统的直接交互来得到数据和信息,现实是要通过数据分析人员与业务系统交互。数据分析工作对企业的重要性日益体现,2001年数据分析部门数据分析室成立,数据分析人员增加。
1.建设数据仓库
数据分析人员发现他必须首先对HDPOS系统数据库中的数据作加工,才能快速和正确相应管理人员的需求。在明确了解管理人员的问题,即分析和决策主题,对数据加工过程和规则掌握后,2001年数据分析部门开始构建面向分析和决策的数据仓库。
数据仓库的硬件是一台空间为150G的服务器,操作系统是win2000server,由于是数据分析人员自己构建,数据仓库选择了SQL2000。
1.1 数据粒度和事实表
在可的便利,分析数据中最常见的数据粒度是时间按月,业务单元到门店,商品单位到商品代码。在业务数据库(HDPOS)中,单据数据的时间是精确到秒的,部分单据业务单元是到门店下属的仓位。 在数据仓库中,储存了从2000年01月以后数据粒度为(月、店、单品)的销售、进货、配货、库存数据,这些数据都有数量、售价金额、去税售价金额、成本金额、去税成本金额五个值。并对配货和进货数据进行了统一处理,因为进货和配货有多种流程和单据。
在数据仓库中,储存了最近13个月的数据粒度为(日、店、单品)的销售、进货、配货数据
。 在数据仓库中,储存了指定日期的数据粒度为(时段、店、单品)的销售流水数据。
为满足预算和业绩管理,数据仓库中统一储存了各部门的预算和业绩考核数据。数据仓库还储存了来自于财务和发展部门的其他数据。
1.2维度数据
分析的水平、深度、和广度取决于维度数据,维度越多对fact数据的认识就越深刻。维度数据处理来源很多,是企业管理经验和数据的提练
商品的维度重要的有: 按分类体系 按商圈 按重要程度 按规格(部分商品) 按毛利率
门店的维度重要的有: 按组织体系 按单店水平 按地域分布 按产权属性 此外,还有关于供应商和业务人员的维度。
1.3 数据加工
数据仓库建在SQL2000上,于是使用SQL2000的数据转换功能,将数据抽取、清洗、整理的规则写成数据转换报。 月度数据和来自业务系统之外的数据加工,通过人工触发数据转换包实现。月度数据是在每月财务结算完毕后处理,外系统数据在收到数据后处理。
日事实数据和维度数据加工,通过SQL2000的作业机制,按时间规则每日自动调用数据转换报实现。首先清除数据仓库中最后六日的数据,然后导入最新七日的数据,通过这样的规则来保障数据仓库与业务数据库数据的一致性。 时段数据的加工,按需要的日期触发数据转换包实现。1. 4分析服务器使用SQL2000的Analysis Service作为OLAP服务器,将数据仓库中的数据加工成多维数据集(cube)。
目前仅使用数据仓库中的月度事实数据和时段事实数据来建立cube。
2.报表服务器和前端工具
报表服务器和前端界面工具均使用微软的EXCEL。
2.1 报表服务器
在服务器上安装excel软件,数据分析软件将报表逻辑用VBA写入excel文件中。利用window操作系统计划任务功能自动打开excel,执行VBA脚本。自动完成与数据仓库连结,制作多维数据透视表,将报表文件通过电子邮件发送到指定用户。
有了这个框架,分析报表体系就表现为excel文件的集合,每个多维数据透视表的excel文件针对一个管理主题。
2003年企业建成HDINTRA办公系统后,用户还通过浏览器以公文方式接收excel报表文件。报表服务器自动将excel报表文件上传到HDINTRA的ftp服务器。实现了数据分析系统与办公系统的集成。
2.2前端工具
用户收到excel数据文件后,打开后就可使用。Excel是标准的工具,现在管理人员都具有一定基础。操作上只需对管理人员进行多维数据透视表的使用。
3.数据分析人员
数据分析人员既是业务专家,又是信息系统专家,但首先必须是业务专家,尤其是企业内部的数据分析人员。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21