来源:丁点帮你
作者:丁点helper
什么叫经济增长?最简单的理解就是,一个经济体,通常是一个国家,生产出来越来越多的产品(包括服务)为人所用。
所以为了方便起见,我们就不说产品和服务,而是统称为“产出”,一般用字母
表示。
因此,单单用数据来看,经济增长就是指经济中的产出量越来越大,同时,因为这些产出最终都被人消耗掉了,所以也可以理解为经济中被使用的产品和服务越来越多。
前者是从“供给”的角度在描述,后者是从"需求“的角度来说。所以,研究经济增长,实际上可以从供给和需求两个角度分别切入:
从供给侧来看经济的生产能力是如何扩大的;从需求侧来看经济人的需求是如何得到越来越多的满足的。
从供给面来分析经济增长,核心问题是:经济中的产出为什么会越来越多?
要解答这个问题,我们需要引入一个数量分析的框架——生产函数(production function)。
这里我们先不从数学的角度来关心这个函数具体长什么样子,而是把它看做一个整体,或者说一个”魔盒“。
可以说,正是这个盒子将我们经济活动中投入的生产要素与产出联系起来了。
我们都知道,谈到函数,首先想两个问题:自变量和因变量。
对于这里的生产函数,因变量就是"产出",用Y表示;自变量就是K和L,分别代表了资本(如厂房、机器、设备等)和劳动力两大类。
用数学公式来表示就是:
Y即产出(可以理解为GDP),K表示资本存量,L表示劳动力投入,
就是所谓的”生产函数“。
这是最简单的生产函数的形式,很好理解。
比如,我们要生产面包,当然需要面包机(资本K),还需要面包工人(劳动力L),只有将两者有机地整合在一起,才可能生产出面包(产出Y)。
除了资本和劳动力之外,还有一种要素会影响面包的产出,即技术的进步,一般用A表示。
注意:这里的技术并非仅是大家一般以为的科学技术,它实际还包括管理水平等”软实力“,是一个十分宽泛的概念。
引入技术之后,生产函数可变为:
在这种生产函数下,A被称作全要素生产率(total factor productivity,简称TFP)。
这里的”全“字意味着,技术的进步会同时提升资本和劳动力的产出效率。
虽然我们现在没有具体的分析生产函数的具体形式,但有一个性质是我们必须要谈的:生产要素的边际产量递减(diminishing marginal product)。
前面说了,资本和劳动力是最常见的两种生产要素,所以生产要素的边际产量递减,就意味着劳动的边际产量递减、资本的边际产量也递减。
边际产量英文为:Marginal Production;
进而劳动的边际产量就表示为:Marginal Production of Labor, 简写为 MPL;
资本的边际产量即为 Marginal Production of Capital, MPK。
用简单的数学式子表示就是:
这里一连出了好几个”边际“,估计同学们都搞晕了。
什么叫边际?其实我们可以直接理解为”新增“:劳动的边际产量就是:新增的劳动力带来的新增的产出。
比如,新开的面包店,雇用第一名工人时,他每天可以生产20块面包;此时再雇用第二名工人(新增的劳动力),就会带来面包总数的增加,比如现在一共可以生产35块面包。
35是总数,可是因为新雇用的第二名工人带来的面包产量的增加是多少呢?
就是35-20=15;也就是说,新增一名工人带来的新增的面包是15,这就是第二名工人的边际产量。
对比第一个工人,当只有他一个人的时候,他能制作的面包是20块,即20就是第一个工人的边际产量。
很明显,15小于20,意味着雇用的第二名工人的边际产量小于第一名工人。这就是所谓的劳动力边际产量递减的规律。
刚开始接触经济学时可能会觉得这个不可思议,这里往往是跟规模效应弄混了。
实际上,边际产量递减是经济学中少有的所谓的”铁律“,即几乎不管在什么情况下都会成立的规律。
我们可以尝试从反面解释一下,即如果边际产量递增会怎样?
边际产量递增意味着你每次多雇用一名工人,他所带来的面包的产量(也就是他的边际产量)会增加,也就是说比他上一名工人生产的还多,
这意味着,只要我们不断的雇用工人,面包就会越来越多。
这显然是不符合实际的!
因为如果边际产量递增,那我们只需无止境地雇用劳动,就可以生产出越来越多的产品,而不需要做任何其他的改善。
可是现实是,一个工厂所能容纳的工人一定是有限的,超出了这个限度,产量不会增加,甚至会下降。
这里我们引入这个规律后就会明白,虽然每种要素投入越多,产出就越多,但随着要素的增加,新增所带来的产出的增量其实是越来越少的。
如果用数学的语言来描述可能会更直接和准确:
因为Y是K和L的函数,所以我们可以把Y对K和L求导:
求导出来,一阶导是正的,意味着随着K或者L的增加,Y增加;但是其二阶导就是负的,即新增带来的新增是下降的。
用图形来表示:
上述这条曲线表示,当资本量不变的情况下(
),产出如何取决于劳动投入,即劳动的边际产量(MPL)。随着劳动量的增加,生产函数变得更加平坦,表明劳动边际产量递减。
当然,资本有这样一致的规律。
以上就是从供给面分析经济需要掌握的两个入门的内容,后续的分析就需要在此基础上进行,这便是我们下一期文章的内容。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20