R语言由新西兰奥克兰大学Ross和Robert开发。
R语言是自由软件,可以放心大胆地使用,且具有非常强大的统计分析和作图功能,而且更重要的是R软件具有非常丰富的网上资源,目前R软件有3000多种贡献包,几乎可以实现所有的统计方法,目前大部分的顶级统计学家和计量经济学家都使用R语言,而且越来越多的数据分析实务人员也开始使用R语言。
R语言具有简单易学,功能强大,体积小(仅40m左右),完全免费,可自由开发等特点,且R语言和S语言语法基本相同,绝大部分程序是互相兼容的。学习R软件正成为一种趋势。
R软件最优美的地方是它能够修改很多前人编写的包的代码做各种你所需的事情,实际你是站在巨人的肩膀上。——Google首席经济学家Hal Varian
时间:2018年1月21-23日 (三天)初级;1月23-25日 (三天)高级
地点:北京市海淀区首都体育学院
费用:
初级:3300元 / 2800元 (仅限全日制本科生及硕士研究生优惠价)
高级:3600元 / 3100元 (仅限全日制本科生和硕士研究生优惠价)
全程:6000元 / 5400元 (仅限全日制本科生和硕士研究生优惠价)
(食宿自理)
安排:上午9:00-12:00;下午2:00-5:00;答疑
讲师介绍:
方匡南老师,统计学教授,博士生导师,耶鲁大学博士后。主要研究:数据挖掘、应用统计。 2007年出版了国内第一本R语言中文教程《R语言统计分析软件简明教程》,并于2015年2月出版了《R数据分析:方法与案例详解》,该书在同类书籍中销售名列前茅,并被引入到台湾地区出版。有10多年的R语言使用经验和丰富的数据挖掘和机器学习实战经验。曾先后在在 Journal of Multivariate Analysis、Scientific Reports(Nature子刊)、Computational Statistics and Data Analysis等国内外权威期刊发表论文70多篇。先后主持了国家自然科学基金、国家社科基金等多个项目。
学员对象:
金融、医疗、通讯、咨询、电子商务等领域的数据分析人员、数据挖掘工程师、数据科学家;
高校硕士生、博士生、青年教师等。
培训目的和特色:
1. 让学员快速入门并熟练掌握R语言,掌握如何利用R丰富的网上资料和帮助系统,学会基本的编程方法。
2. 以实际案例引入,深入浅出地讲解如何使用R语言进行数据挖掘和机器学习,让学员不仅掌握R语言的使用,更重要的是学会数据挖掘和机器学习的思想、原理和方法。
培训内容目录:
【初级班】
专题名称 |
授课内容 |
第1讲(3小时) R语言入门 |
目标:掌握R语言的基本用法 1.R语言介绍 2.编辑软件Rstudio使用 3.R程序包的载入与使用 4.数据对象及运算(向量、矩阵、数组、列表与数据框处理) |
第2讲(3小时) 数据读写 R基本编程 |
目标:掌握用R编写函数和数据的读写 1. R数据读入与读出 (读入txt、xls、SPSS、SAS、stata以及数据库文件) 2.R 函数编写 3.R的条件与循环函数 4.高效编程技巧介绍 |
第3讲(3小时) 数据预处理 探索性分析 |
目标:掌握数据预处理与探索性分析 1.数据预处理 2.缺失值处理 3.随机数生成 4.常用统计方法的蒙特卡洛模拟 5.随机抽样 6.单变量数据分析与作图 7.双变量数据分析与作图 8.多变量数据分析与作图 案例1:统计作图在调查数据中的应用 案例2:统计作图在临床医学中的应用 |
第4讲(3小时) |
4.一元线性回归 5.多元线性回归 6.逐步回归 案例1:广告营销计划案例 案例2:信用卡债务预测案例 案例3:房价预测案例 |
第5讲(3小时) 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
第6讲(3小时) 重抽样方法 互动交流讨论 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 互动交流讨论 |
【高级班】
专题名称 |
授课内容 |
第1讲 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
第2讲(3小时) 重抽样方法 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 |
第3讲(3小时) 组合预测 |
课程目标:掌握决策树和组合预测方法及其实际应用。 1.CART决策树 2.Bagging 3.随机森林 4.Boosting算法 案例1:棒球运动员薪水预测案例 案例2:心脏病预测案例 案例3:信用卡违约预测案例 |
第4讲(3小时) |
课程目标:掌握支持向量机分类方法 1.最大间隔分类器 2.支持向量分类器 3.支持向量机 案例1:基因表达数据案例 案例2:股票涨跌方向预测 |
第5讲(3小时) 变量选择与高维数据 |
目标:掌握数据挖掘中高维数据分析方法及其实际应用 1.LASSO 2.SCAD 3.MCP 4.Group LASSO 案例1:基因筛选 案例2: 股票选股 |
第6讲(3小时) 无监督学习 主成分分析 主成分回归 聚类分析 |
目标:掌握无监督学习方法及其应用。 1.主成分分析 2.主成分回归 3.Kmeans聚类分析 4.系统聚类分析 案例1:广告支出主成分分析 案例2:犯罪率主成分分析 案例3:学生考试成绩主成分分析 案例4:客户细分聚类案例 |
优惠:
现场班老学员9折优惠;
以上优惠不叠加。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14