怎样进行大数据的入门级学习? 文 | 郭小贤 数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。 但从狭义上来看 ...
2015-11-27十个有效的大数据分析途径让你更了解用户 我们正处于福雷斯特研究公司所描述的“用户时代”,这个时代中驱动业务决策的不再是公司,而是用户。基于这个原因,深度理解用户的重要性已经远胜以往,因此许 ...
2015-11-27数据挖掘技术:客户价值分析 使用RFM方法(最近购买日Recency, 各期购买频率Frequency, 各期平均单次购买金额Monetary)能够科学地预测老客户(有交易客户)今后的购买金额,再对销售毛利率、关系营销费用进 ...
2015-11-27网站数据分析:流量分析的四项指标 电子商务网站的流量分析与其他网站大体相同,区别主要在于效率转换以及用户特征,这对于电子商务网站来说尤为重要,而流量的总数相对并不十分特别要紧,因为只要 ...
2015-11-27如何做用户行为路径分析 用户行为路径分析是互联网行业特有的一类数据分析方法,它主要根据每位用户在App或网站中的点击行为日志,分析用户在App或网站中各个模块的流转规律与特点,挖掘用户的访问或点 ...
2015-11-27新手成为游戏分析大师的九个步骤 四个月以前,因为无知而胆大,我为自己树立了一个目标——成为世界上最优秀的游戏分析师之一。还笑?如果我告诉你我认为游戏机制是游戏开发者讽刺自己的术语呢?或者DAU( ...
2015-11-27一文告诉你排序在数据分析中有多重要 说不会对数据排序的举手,所有的手都放下了。拿到数据,谁还不会排序吗?就连你在打牌时都在排序。 可是这一小小的操作,在数据分析中到底有多重要, ...
2015-11-27如何利用SAS进行随机抽样 利用SAS进行随机抽样 在构建数据挖掘模型过程中,有时我们无法对所有的整体进行全面研究,有时我们希望将整体划分为训练集、验证集、测试集三份用于不同目的的数据集, ...
2015-11-26数据分析5种入门方法,你get了么 2015年,对于数据行业来说,确实有各种质的飞跃,各种白皮书,各种以数据命名的新兴职业呈现百花齐放的局面。数据这个词被用得越来越多,热度越来越大。不可置否的是数 ...
2015-11-26数据分析方法论:有对比才有效果 处于大数据时代,如果只是一味埋头苦干,无法在大环境里站住脚跟,只有拥有大局观,才能让自己的电商之路走的更远,这种时候,学会 数据分析 对比法显得尤为重要。 ...
2015-11-26北上广深不相信眼泪 大都市上班族行为数据分析 曾经,“逃离北上广”成为年轻人中一个口号式的选择,但是,这个口号根本就没喊上多久,就没人响应了,因为,“逃离北上广”的人又都回来了。只有“北上广 ...
2015-11-26R语言实现常用的5种分析方法(主成分+因子+多维标度+判别+聚类) R语言多元分析系列之一:主成分分析 主成分分析(principal components analysis, PCA)是一种分析、简化数据集的技术。它把原 ...
2015-11-2616个你绝不知道的Python神奇技能 文 | Andrew Liu 显示有限的接口到外部 当发布python第三方package时, 并不希望代码中所有的函数或者class可以被外部import, 在__init__.py中添加__all__属性 ...
2015-11-26大数据在未来将进一步体现价值 日常生活中,能够制造出数据的领域遍布各个行业,商务贸易、在线视频图像资料、社交网络媒体信息、企业信息管理以及电子政务等等,都会涉及到大数据。 而在过去的 ...
2015-11-26未来零售商如何通过大数据圈住消费者 现在的零售商都知道大数据对于他们商业运作的意义,例如可以分析消费者的大数据为他们量身定制服务,满足他们个性化需求。想象一下,当一位顾客踏进百货店大门的一 ...
2015-11-26小商家的大数据 这几年关于“C2B”和“大数据”的说法越来越多,大部分皇冠卖家已经知道了“从客户出发做选择”的重要性,知道了“数据驱动”的重要性。以至于不少皇冠卖家都有了自己专门的“数据研究” ...
2015-11-26企业大数据实战案例 一、家电行业 以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运 ...
2015-11-26如何将数据转化为收益:3步激活数据法! 虽然我们身处数字化时代,可作为营销者,稍稍审视一下,我们也不得不承认,数据分析仍是一个朝阳产业。 如果你像大多数机构一样,这意味着尽管你要收集比 ...
2015-11-25用R语言进行数据分析:一个简单的会话 下面的会话让你在操作中对 R 环境的一些特性有个简单的了解。你对系统的许多特性开始时可能 有点不熟悉和困惑,但这些迷惑会很快 消失的。 登录,启动你的 ...
2015-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26