cda

数字化人才认证

首页 > 行业图谱 >

神经网络中的偏置(bias)究竟有什么用?
2023-03-23
神经网络中的偏置(bias)是一个常数,它被添加到每个神经元的加权输入中。虽然它只是一个小的常数项,但却在神经网络的学习过程中起着重要的作用。在本文中,我们将详细探讨偏置的作用及其在神经网络中的重要性。 ...
神经网络如何进行回归预测?
2023-03-23
神经网络是一种模拟人脑神经元工作方式的机器学习算法,具有强大的非线性建模能力和自适应性。在回归预测问题中,神经网络通常被用来对输入数据进行函数拟合,从而预测相关的输出值。本文将介绍神经网络进行回归预测 ...
LSTM里Embedding Layer的作用是什么?
2023-03-22
LSTM是一种经典的循环神经网络,已经广泛应用于自然语言处理、语音识别、图像生成等领域。在LSTM中,Embedding Layer(嵌入层)是非常重要的一部分,它可以将输入序列中的每个离散变量映射成一个连续向量,从而便于 ...
如何实现用遗传算法或神经网络进行因子挖掘?
2023-03-22
因子挖掘是指从数据中寻找影响目标变量的关键因素,它在金融、医学、生物等领域都有广泛的应用。遗传算法和神经网络是两种常用的因子挖掘方法。本文将介绍如何使用这两种方法进行因子挖掘,并对其优缺点进行分析。 ...
pytorch如何设置batch-size和num_workers,避免超显存, 并提高实验速度?
2023-03-22
PyTorch 是一个广泛使用的深度学习框架,在使用过程中,设置 Batch Size 和 Num Workers 是非常重要的。Batch Size 与 Num Workers 的设置关系到 GPU 内存的使用和训练速度。 在 PyTorch 中,通过 DataLoader 对数据 ...
如何用神经网络实现连续型变量的回归预测?
2023-03-22
神经网络是一种强大的机器学习工具,已被广泛应用于各种预测和分类问题。其中一个常见的应用是使用神经网络进行连续型变量的回归预测。本文将介绍如何使用神经网络完成这个任务。 数据准备 首先,我们需要准备数据 ...
机器学习算法中 GBDT 和 XGBOOST 的区别有哪些?
2023-03-22
Gradient Boosting Decision Tree (GBDT) 和 Extreme Gradient Boosting (XGBoost) 都是目前机器学习领域中非常流行的算法。两种算法都采用了 boosting 方法来提高分类或回归效果,但在实现细节上还是有一些区别的 ...
如何理解神经网络中通过add的方式融合特征?
2023-03-15
神经网络是一种模拟人脑的计算模型,具有自主学习和自我调整的能力。在神经网络中,融合特征的方式有很多种,其中通过add的方式进行特征融合是比较常见的方法。 在神经网络中,每层都会提取出输入数据的一组特征,这 ...
神经网络加上注意力机制,精度反而下降,为什么会这样呢?
2023-03-14
近年来,神经网络和注意力机制的结合已经成为了自然语言处理领域中的研究热点。但是,在实际应用中,有时候我们会发现,当将注意力机制加入到神经网络中时,模型的精度反而下降了。为什么会出现这种情况呢?本文将从 ...

数据分析之数据挖掘入门指南

数据分析之数据挖掘入门指南
2022-10-25
数据分析 探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 常用的第三方库 ...

数据分析师之数据挖掘入门

数据分析师之数据挖掘入门
2022-10-19
数据分析 探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 常用的第三方库 ...
如何学习机器学习的数学知识
2022-02-16
分享  数据科学有志之士最常见的问题之一是  行业中的守门人对这种担忧没有帮助,他们给学生贴上了不合格的标签,除非他们拥有该学科的硕士或博士学位。  那么,为了在数据科学行业 ...

如何避免无效的数据分析结果,这六种错误不可忽视

如何避免无效的数据分析结果,这六种错误不可忽视
2021-12-08
导读:在数据清洗过程中,主要处理的是缺失值、异常值和重复值。所谓清洗,是对数据集通过丢弃、填充、替换、去重等操作,达到去除异常、纠正错误、补足缺失的目的。 作者:宋天龙 本文转自:大数据DT( ...

Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能

Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能
2021-11-22
作者:俊欣 来源:关于数据分析与可视化 今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征 ...

深度学习预测房价:回归问题,K折交叉

深度学习预测房价:回归问题,K折交叉
2021-11-15
作者:AI入门学习 来源:小伍哥 机器学习中,大部分是分类问题,另一种常见的机器学习问题是回归问题,它预测一个连续值而不是离散的标签,例如,根据气象数据预测明天的气温,或者根据软件说明书预测完成软 ...

CDA Level Ⅲ 数据分析认证考试模拟题库(第十三期)

CDA Level Ⅲ 数据分析认证考试模拟题库(第十三期)
2024-10-05
不过,在出题前,要公布上一期Level Ⅲ 中61-65题的答案,大家一起来看! 62、ABD 64、ABD A.树长得太高容易过拟合 C.可以通过剪枝限制过拟合 67.决策树模型是一种描述对实例进行分类的树形结构 ...

CDA Level Ⅲ 数据分析认证考试模拟题库(第九期)

CDA Level Ⅲ 数据分析认证考试模拟题库(第九期)
2021-08-05
不过,在出题前,要公布上一期Level Ⅲ 中36-40题的答案,大家一起来看! 42、A 44、B A.会将数据缩放到0-1范围之内 C.作用是将不同量纲数据的量纲进行统一 47.常见的缺失值填充方法有填充默认值 ...

太厉害了!Seaborn也能做多种回归分析,统统只需一行代码

太厉害了!Seaborn也能做多种回归分析,统统只需一行代码
2021-07-07
作者:云朵君 本文主要介绍回归模型图lmplot、线性回归图regplot,这两个函数的核心功能很相似,都会绘制数据散点图,并且拟合关于变量x,y之间的回归曲线,同时显示回归的95%置信区间。 所有图形将使 ...

CDA LEVEL II 数据分析认证考试模拟题库(六)

CDA LEVEL II 数据分析认证考试模拟题库(六)
2021-04-29
查看更多题目 21、A 23、A 25、D A.可能严重低估误差项的方差 C.最小方差无偏性不再成立 D.最小方差无偏性仍成立 A.回归问题要远比分类问题更加复杂 C.回归问题最常用的评价指标体系有混淆矩 ...

CDA LEVEL I 数据分析认证考试模拟题库(二十)

CDA LEVEL I 数据分析认证考试模拟题库(二十)
2021-01-19
不过,在出题前,要公布下上一期11-15题的答案,大家一起来看! 12、A 14、B 你答对了吗? 16.QQ图可以用来检验( ) B.共线性 D.过拟合 A.逻辑回归是无监督学习 C.逻辑回归是非线性回归 ...

OK