cda

数字化人才认证

首页 > 行业图谱 >

支持向量机SVM 概念及特征介绍

支持向量机SVM 概念及特征介绍
2020-07-03
支持向量机SVM(Support Vector Machine),是常见的一种判别方法。在机器学习领域,是有监督学习模型,通常用来进行模式识别、分类及回归分析,主要针对小样本数据进行学习、分类和预测,类似的根据样本进行学习的 ...
简单理解文本挖掘的定义与过程
2020-07-02
文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程。 文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法,主要用途 ...

 这几个常用的python库你需要知道

这几个常用的python库你需要知道
2020-07-02
python可以说是近几年最火热、最实用的、最容易上手的工具之一了。功能强大、应用广泛,可以帮你搜集工作数据,还能帮你下载音乐,电影,于是就掀起了一波学习python的大潮,小编也毫不犹豫的加入了。但是对于向小 ...

实用又好看的Python可视化库有哪些?

实用又好看的Python可视化库有哪些?
2020-07-02
Python是一款功能强大的数据分析工具,其中Python可视化功能更是受到许多数据分析师的青睐,下面小编就给大家分享一些Python可视化库,希望对各位数据分析师小伙伴有所帮助。 1.Matplotlib Matplotlib是一个 ...

Kmeans优化算法:二分K-means聚类算法

Kmeans优化算法:二分K-means聚类算法
2020-05-29
算法的理解 Bi这里是的意思就是Binary,二进制的意思,所以有时候叫这个算法为二进Kmeans算法。为什么我们需要用BiKmeans呢,就是为了解决初始化k个随机的质心点时其中一个或者多个点由于位置太极端而导致迭代 ...

机器学习中的有监督和无监督都包括些什么?

机器学习中的有监督和无监督都包括些什么?
2020-05-29
机器学习算法通常分为有监督的(训练数据有标记答案)和无监督的(可能存在的任何标签均未显示在训练算法中)。有监督的机器学习问题又分为分类(预测非数字答案,例如错过抵押贷款的可能性)和回归(预测 ...

深度学习算法:CNN、RNN、LSTM、TensorFlow等之间的关系!

深度学习算法:CNN、RNN、LSTM、TensorFlow等之间的关系!
2020-05-27
用于实际问题的深度神经网络可能具有10层以上的隐藏层。它的拓扑可能很简单,也可能很复杂。网络中的层越多,它可以识别的特征就越多。不幸的是,网络中的层越多,计算所需的时间就越长,并且训练起来就越困难。 ...

如何正确选择线性回归、逻辑回归、决策等机器学习算法

如何正确选择线性回归、逻辑回归、决策等机器学习算法
2020-05-27
机器学习既是艺术又是科学。但当您查看机器学习算法时,没有一种解决方案或一种适合所有情况的算法。有几个因素会影响您选择哪种机器学习。 有些问题非常具体,需要采取独特的方法。例如,如果您使用推荐系统, ...

机器学习python算法应用,监督学习、无监督学习等!

机器学习python算法应用,监督学习、无监督学习等!
2020-05-25
本系列文章主要介绍机器学习在实践中的应用,介绍利用 python 的生态环境,使用机器学习的算法来解决工程实践中的问题,而不是介绍算法本身。本系列文章参考了《机器学习Python实践》,会通过例子一步一步地引导大 ...

如何用python预测“命定的那个TA”什么时候住酒店?

如何用python预测“命定的那个TA”什么时候住酒店?
2020-05-25
作者:野水晶体  来源:livandata 看到这个题目,大家是否会有一些小小的想法?别闹了!笔者是一个正经人,讨论的也是一个有关python的技术问题,哈哈~ 每个人的行为都是有迹可循的,这些 ...

kmeans优化算法:二分K-means聚类算法

kmeans优化算法:二分K-means聚类算法
2020-05-21
Bi这里是的意思就是Binary,二进制的意思,所以有时候叫这个算法为二进Kmeans算法。为什么我们需要用BiKmeans呢?就是为了解决初始化k个随机的质心点时其中一个或者多个点由于位置太极端而导致迭代的过程中消失的 ...

feature importance函数的简要介绍!

feature importance函数的简要介绍!
2020-05-19
feature importance指特征重要性,在特征选择的许多方法中,我们可以使用随机森林模型中的特征重要属性来筛选特征,并得到其与分类的相关性。 由于随机森林存在的固有随机性,该模型可能每次给予特征不同的重要性 ...

有监督学习:从过去到现在的模型流行度(深度翻译好文)!

有监督学习:从过去到现在的模型流行度(深度翻译好文)!
2020-05-14
在过去的几十年中,机器学习领域发生了巨大的变化。诚然,有些方法已经存在很长时间了,但仍然是该领域的主要内容。例如,Legendre和Gauss已经在19世纪初提出了最小二乘的概念。在最近的几十年中,诸如神经网络等 ...

机器学习入门必读:6种简单实用算法及学习曲线、思维导图

机器学习入门必读:6种简单实用算法及学习曲线、思维导图
2020-03-26
作者 | 卢誉声 大部分的机器学习算法主要用来解决两类问题——分类问题和回归问题。在本文当中,我们介绍一些简单但经典实用的传统机器学习算法,让大家对机器学习算法有一个基本的感性认识。 ...

如何通过分类数据执行特征选择?

如何通过分类数据执行特征选择?
2020-03-09
作者 | Jason Brownlee 编译 | CDA数据分析师 特征选择是识别和选择与目标变量最相关的输入特征子集的过程。 使用实值数据(例如使用Pearson的相关系数)时,特征选择通常很简单,但是 ...

机器学习算法和超参数选择艺术

机器学习算法和超参数选择艺术
2020-03-06
作者 | Mischa Lisovyi & Rosaria Silipo 编译 | CDA数据科学研究院 从智能手机到航天器,机器学习算法无处不在。他们会告诉您明天的天气预报,将一种语言翻译成另一种语言,并建议您接下来想在Netflix ...

机器学习入门篇 | 面向初学者的十大机器学习算法

机器学习入门篇 | 面向初学者的十大机器学习算法
2020-03-03
作者 | Rekhit Pachanekar 来源 | CDA数据分析师 英国数学家,计算机科学家,逻辑学家和密码分析员艾伦·图灵(Alan Turing)推测未来机器会具有智能。 “这就像一个学生,他从老师那 ...

一文讲解机器学习算法中的共线性问题

一文讲解机器学习算法中的共线性问题
2020-01-08
作者 | 宋老师 来源 | JSong的数据科学小站 多重共线性是使用线性回归算法时经常要面对的一个问题。在其他算法中,例如决策树和贝叶斯,前者的建模过程是逐步递进,每次拆分只有一个变量参 ...

新手机器学习工程师最容易犯的6大错误

新手机器学习工程师最容易犯的6大错误
2019-12-16
作者 | Christopher Dossman 编译 | ronghuaiyang 在机器学习中,有许多方法来构建产品或解决方案,每种方法都假设不同的东西。很多时候,如何识别哪些假设是合理的并不明显。刚接触机器学 ...

22道机器学习常见面试题目汇总!(附详细答案)

22道机器学习常见面试题目汇总!(附详细答案)
2019-12-03
作者 | 数据分析1480 来源 | lsxxx2011 (1) 无监督和有监督算法的区别? 有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。 ...

OK