cda

数字化人才认证

首页 > 行业图谱 >

如何将卷积神经网络应用在一维时间序列数据上?
2023-03-30
卷积神经网络是一种强大的深度学习模型,通常用于处理图像数据,但它也可以应用于一维时间序列数据。在本文中,我们将探讨如何将卷积神经网络应用于一维时间序列数据,并介绍一些常见的技术和方法。 什么是一维时间 ...
如何通俗的解释模糊神经网络
2023-03-30
模糊神经网络(Fuzzy Neural Network)是一种结合了神经网络和模糊逻辑的人工智能算法,它可以用于分类、聚类、预测等多种任务,并且在处理模糊、不确定性信息方面具有优势。 为了更好地理解模糊神经网络,我们可以 ...
训练神经网络时,训练集loss下降,但是验证集loss一直不下降,这怎么解决呢?
2023-03-30
在机器学习中,训练神经网络是一个非常重要的任务。通常,我们会将数据集分成训练集和验证集,用于训练和测试我们的模型。在训练神经网络时,我们希望看到训练集的损失值(loss)不断下降,这表明随着时间的推移,模 ...
神经网络中,激活函数sigmoid和tanh除了阈值取值外有什么不同吗?
2023-03-29
在神经网络中,激活函数是非常重要的组成部分。它们将输入信号转换为输出信号,并且对神经网络的性能和训练速度有着很大的影响。sigmoid和tanh是两种最常见的激活函数之一,它们在很多方面都非常相似,但是它们也有 ...
为什么神经网络会存在灾难性遗忘(catastrophic forgetting)这个问题?
2023-03-29
神经网络是一种模拟生物神经系统的计算模型,它具有自适应性和学习能力,可以通过学习来提高其对特定任务或数据的准确性和泛化能力。但是,在神经网络中存在一个严重的问题,那就是灾难性遗忘。 灾难性遗忘是指神经 ...
神经网络如何在自然语言处理中应用?
2023-03-29
图神经网络是一种新兴的深度学习模型,其可以有效地捕捉非线性关系和复杂数据结构。近年来,图神经网络在自然语言处理领域中得到了广泛应用,特别是在文本分类、命名实体识别、情感分析等任务中取得了很好的效果。 ...
深度学习与神经网络有什么区别?
2023-03-29
深度学习和神经网络是人工智能领域中的两个重要概念,它们在很多方面有着相似之处,但也存在一些区别。本文将从定义、结构、应用等方面来探讨深度学习与神经网络的区别。 定义 深度学习是一种基于人工神经网络的机 ...
如何判断深度神经网络是否过拟合?
2023-03-27
深度神经网络是一种强大的机器学习工具,可以用于各种应用,包括图像识别、自然语言处理和推荐系统等。但是,当训练数据过少或模型过于复杂时,可能会导致过拟合问题。本文将介绍如何判断深度神经网络是否过拟合。 ...
神经网络(GNN)现在可以研究的方向有哪些呢?
2023-03-27
图神经网络(GNN)是近年来机器学习领域中备受关注的一种新型神经网络结构。它主要用于处理图数据,并且在社交网络、生物信息学和交通路网等领域有着广泛的应用。目前,GNN的研究方向涵盖了多个领域,本文将从以下几 ...
为什么有的神经网络加入注意力机制后效果反而变差了?
2023-03-23
注意力机制是一种在神经网络中应用广泛的技术,能够帮助模型更好地理解输入数据,提高模型的性能和精度。然而,有时候加入注意力机制后模型的效果并没有得到明显的提升,甚至会变差。那么,为什么有的神经网络加入注 ...
神经网络中的偏置(bias)究竟有什么用?
2023-03-23
神经网络中的偏置(bias)是一个常数,它被添加到每个神经元的加权输入中。虽然它只是一个小的常数项,但却在神经网络的学习过程中起着重要的作用。在本文中,我们将详细探讨偏置的作用及其在神经网络中的重要性。 ...
神经网络如何进行回归预测?
2023-03-23
神经网络是一种模拟人脑神经元工作方式的机器学习算法,具有强大的非线性建模能力和自适应性。在回归预测问题中,神经网络通常被用来对输入数据进行函数拟合,从而预测相关的输出值。本文将介绍神经网络进行回归预测 ...
神经网络最后一层需要激活函数吗?
2023-03-23
神经网络在深度学习领域中是一种非常重要的模型,它可以通过处理大量数据来实现各种任务,如图像识别、语音识别、自然语言处理等。每个神经网络都由多个层组成,其中最后一层通常被称为输出层。但是,许多人对于最后 ...
FPGA为什么适合做神经网络的计算加速?
2023-03-23
FPGA(Field Programmable Gate Array)是一种灵活的硬件加速器,与传统的CPU和GPU相比,它可以提供更高效的计算加速。神经网络是一种广泛应用于人工智能领域的技术,其基于大量的矩阵运算和向量乘法来进行计算,这 ...
神经网络训练时如何找到最优的那个随机种子?
2023-03-23
在神经网络训练中,随机种子是一个非常重要的超参数,因为它可以影响模型的最终性能。找到一个优秀的随机种子可以提高模型的稳定性和泛化能力。但是,如何找到这个最优的随机种子呢?本文将介绍一些常用的方法。 首 ...
卷积神经网络提取图像特征时具有旋转不变性吗?
2023-03-22
卷积神经网络(Convolutional Neural Network,CNN)是一种非常强大的图像处理和分类工具。在许多实际应用中,我们需要对图像进行旋转、缩放、平移等操作,并期望神经网络能够对这些变化保持不变性。本文将探讨卷积 ...
为什么很少拿神经网络来直接做滤波器呢?
2023-03-22
神经网络是一种强大的机器学习技术,可以用于各种任务,如图像分类、语音识别和自然语言处理等。在这些任务中,神经网络已经取得了很大的成功,但为什么很少使用神经网络来直接做滤波器呢?本文将提供一些可能的原因 ...
如何实现用遗传算法或神经网络进行因子挖掘?
2023-03-22
因子挖掘是指从数据中寻找影响目标变量的关键因素,它在金融、医学、生物等领域都有广泛的应用。遗传算法和神经网络是两种常用的因子挖掘方法。本文将介绍如何使用这两种方法进行因子挖掘,并对其优缺点进行分析。 ...
如何用神经网络实现连续型变量的回归预测?
2023-03-22
神经网络是一种强大的机器学习工具,已被广泛应用于各种预测和分类问题。其中一个常见的应用是使用神经网络进行连续型变量的回归预测。本文将介绍如何使用神经网络完成这个任务。 数据准备 首先,我们需要准备数据 ...
基于深度卷积神经网络进行人脸识别的原理是什么?
2023-03-22
人脸识别是一种常见的生物特征识别技术,它通过计算机视觉技术来识别人脸并将其与已知的人脸进行比对,从而实现身份验证或识别。在过去几年中,深度卷积神经网络(CNN)已经成为人脸识别领域取得重要进展的核心技术 ...

OK