cda

数字化人才认证

首页 > 行业图谱 >

Python实现基于机器学习的RFM模型

Python实现基于机器学习的RFM模型
2022-01-27
CDA数据分析师 出品 岗位:数据分析师 背景 如今新基建大数据、人工智能行业在迅速的发展,而机器学习是其中不可或缺的一环,机器学习强调的是利用人脑一般从历史的数据中学习到经验并运用与未来的 ...

深度学习预测房价:回归问题,K折交叉

深度学习预测房价:回归问题,K折交叉
2021-11-15
作者:AI入门学习 来源:小伍哥 机器学习中,大部分是分类问题,另一种常见的机器学习问题是回归问题,它预测一个连续值而不是离散的标签,例如,根据气象数据预测明天的气温,或者根据软件说明书预测完成软 ...

在工作岗位上培养数据分析能力的路径

在工作岗位上培养数据分析能力的路径
2021-10-20
在工作岗位上培养数据分析能力的路径 不少人认为从学校毕业,进入工作岗位后学习数据分析能力是一件很痛苦的事。其实如果方法得当,工作中学习数据分析反而可以得到事半功倍的效果。本篇中介绍一个PACS(流程(Pr ...

太厉害了!Seaborn也能做多种回归分析,统统只需一行代码

太厉害了!Seaborn也能做多种回归分析,统统只需一行代码
2021-07-07
作者:云朵君 本文主要介绍回归模型图lmplot、线性回归图regplot,这两个函数的核心功能很相似,都会绘制数据散点图,并且拟合关于变量x,y之间的回归曲线,同时显示回归的95%置信区间。 所有图形将使 ...

CDA LEVEL 1 考试,知识点汇总《数据分析概述》

CDA LEVEL 1 考试,知识点汇总《数据分析概述》
2024-08-13
1.数据分析和数据挖掘的概念 数据挖掘(Data Mining) : 是一个跨学科的计算机科学分支,它是用人工智能、机器学习、统计学和数据库的交叉方法在相对较大型的数据集中发 现模式的计算过程。 数据分析的目 ...

机器学习三要素

机器学习三要素
2018-08-26
机器学习三要素 通过对机器学习探索,发现其实无论用什么方法想要达到什么目的,其最终都是要求的一个能对新数据进行预测的公式,该公式可能是以概率的形式出现,即P(Y|X);也可能是以函数的形式出现,即y=f( ...

机器学习模型设计五要素

机器学习模型设计五要素
2018-08-26
机器学习模型设计五要素 数据可能没什么用,但是数据中包含的信息有用,能够减少不确定性,数据中信息量决定了算法能达到的上限。 数据环节是整个模型搭建过程中工作量最大的地方,从埋点,日志上报,清洗, ...

深度学习已成功应用于这三大领域

深度学习已成功应用于这三大领域
2017-11-20
深度学习已成功应用于这三大领域 在本章中,我们将介绍如何使用深度学习来解决计算机视觉、语音识别、自然语言处理以及其他商业领域中的应用。首先我们将讨论在许多最重要的AI 应用中所需的大规模神经网络的实 ...

机器学习之Logistic回归与Python实现

机器学习之Logistic回归与Python实现
2017-07-24
机器学习之Logistic回归与Python实现 logistic回归是一种广义的线性回归,通过构造回归函数,利用机器学习来实现分类或者预测。 一 Logistic回归概述 Logistic回归的主要思想是,根据现有的数据对分类边 ...

详解反向传播算法

详解反向传播算法
2017-05-25
详解反向传播算法 反向传播算法(Backpropagation)已经是神经网络模型进行学习的标配。但是有很多问题值得思考一下: 反向传播算法的作用是什么? 神经网络模型的学习算法一般是SGD。SGD需要用到损 ...

简单易学的机器学习算法—极限学习机(ELM)

简单易学的机器学习算法—极限学习机(ELM)
2017-03-23
简单易学的机器学习算法—极限学习机(ELM) 一、极限学习机的概念     极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。     ELM最大的 ...

用十张图解释机器学习的基本概念

用十张图解释机器学习的基本概念
2017-03-20
用十张图解释机器学习的基本概念 在解释机器学习的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。 1. Test and training error: 为什么低训练误差并不总 ...

批量梯度下降与随机梯度下降

批量梯度下降与随机梯度下降
2017-03-15
批量梯度下降与随机梯度下降 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的记录条数,j是参数的个数。 ...

机器学习常用算法(LDA,CNN,LR)原理简述

机器学习常用算法(LDA,CNN,LR)原理简述
2017-03-14
机器学习常用算法(LDA,CNN,LR)原理简述 1.LDA LDA是一种三层贝叶斯模型,三层分别为:文档层、主题层和词层。该模型基于如下假设: 1)整个文档集合中存在k个互相独立的主题; 2)每一个主题是词上的多项 ...

机器学习中使用的神经网络

机器学习中使用的神经网络
2017-03-14
机器学习中使用的神经网络 这一小节介绍随机梯度下降法(stochastic gradient descent)在神经网络中的使用,这里首先回顾了第三讲中介绍的线性神经网络的误差曲面(error surface),如下图所示。线性神经网络对 ...

机器学习:决策树(Decision Tree)

机器学习:决策树(Decision Tree)
2017-03-11
机器学习:决策树(Decision Tree) 决策树(decision tree)是一种基本的分类与回归方法。在分类问题中,它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。在学习时,利 ...

十张图解释机器学习的基本概念

十张图解释机器学习的基本概念
2016-10-05
十张图解释机器学习的基本概念 在解释机器学习的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。 1. Test and training error: 为什么低训练误差并不总是 ...

K-means算法及文本聚类实践

K-means算法及文本聚类实践
2016-08-17
K-means算法及文本聚类实践 K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果。 基本思想 k-mea ...

机器学习算法需要注意的一些问题

机器学习算法需要注意的一些问题
2016-05-05
机器学习算法需要注意的一些问题 对于机器学习的实际运用,光停留在知道了解的层面还不够,我们需要对实际中容易遇到的一些问题进行深入的挖掘理解。我打算将一些琐碎的知识点做一个整理。 1 数据不平衡问 ...

太奇妙了,基于OpencvCV的情绪检测!

太奇妙了,基于OpencvCV的情绪检测!
2020-08-20
情绪检测或表情分类在深度学习领域中有着广泛的研究。使用相机和一些简单的代码我们就可以对情绪进行实时分类,这也是迈向高级人机交互的一步。 前言 本期我们将首先介绍如何使用Keras 创建卷积神 ...

OK