cda

数字化人才认证

首页 > 行业图谱 >

过拟合是如何产生的?有什么好的解决方法?

过拟合是如何产生的?有什么好的解决方法?
2020-07-23
在机器学习中,相对于欠拟合,过拟合出现的频次更高。这是因为,假设某一数据集其对应的模型为‘真’模型,我们通常是采用提高模型的复杂度的方法,来避免欠拟合现象的产生,但与此同时,我们又很难把网络设计成和 ...
应该怎样理解深度学习Caffe?
2020-07-13
Caffe是深度学习框架中经常遇到的,那么到底Caffe是什么?我们又应该怎样理解呢?下面,小编对于Caffe做了一个简单的介绍,希望对大家有所帮助。 一、Caffe基本概念 Caffe全称为:Convolutional Architecture ...

如何快速简单地入门Keras?

如何快速简单地入门Keras?
2020-07-13
Keras 是基于 Theano 或 者TensorFlow 的一个深度学习框架,其设计源于Torch,编程语言用 Python ,是一个功能强大、内容抽象,高度模块化的神经网络库,能够支持 GPU 和 CPU。目前tensorflow已经将keras合并到了 ...
XGBoost算法的这3类参数,你知道吗?
2020-07-09
XGBoost是诞生于2014年2月的一种专攻梯度提升算法的机器学习函数库,它有很好的学习效果,速度也非常快,与梯度提升算法在另一个常用机器学习库scikit-learn中的实现相比,XGBoost的性能可以提升10倍以上。还有,X ...
特征工程是什么?常用的方法有哪些?
2020-07-07
“数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器 ...

机器学习中的泛化能力指的是什么?

机器学习中的泛化能力指的是什么?
2020-07-03
概括地说,泛化能力(generalization ability)是指机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为 ...

线性可分支持向量机、线性支持向量机、非线性支持向量机的区别有哪些

线性可分支持向量机、线性支持向量机、非线性支持向量机的区别有哪些
2020-07-03
支持向量机是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器。其学习策略是间隔最大化,可形式化为求解凸二次规划问题,也等价于正则化的合叶损失函数的最小化问题。 支持向量机学习 ...
SVM和LR有哪些相同点和不同点
2020-07-03
SVM和LR是机器学习中常用的算法,今天就让我们来看一下这两者有哪些相同点和不同点吧。 SVM和LR的相同点: 1.LR和SVM都是有监督的学习 2.LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在 ...
SVC,NuSVC,LinearSVC有什么区别
2020-07-03
相信大家在机器学习中,一定常见到;SVC,NvSVC,LinearSVC,今天我们就来看看这三者的区别。 SVC(C-Support Vector Classification): 支持向量分类,基于libsvm实现的,数据拟合的时间复杂度是数据样本的二 ...

线性回归的原理和表达式

线性回归的原理和表达式
2020-07-01
有监督学习的主要任务是分类和回归,而其中最简单的一种回归方式就是线性回归。下面跟随小编一起来看线性回归的内容吧。 线性回归得出的模型不一定是一条直线,在只有一个变量的时候,模型是平面中的一条直线; ...

深度学习算法:CNN、RNN、LSTM、TensorFlow等之间的关系!

深度学习算法:CNN、RNN、LSTM、TensorFlow等之间的关系!
2020-05-27
用于实际问题的深度神经网络可能具有10层以上的隐藏层。它的拓扑可能很简单,也可能很复杂。网络中的层越多,它可以识别的特征就越多。不幸的是,网络中的层越多,计算所需的时间就越长,并且训练起来就越困难。 ...

Kmeans算法精简版(无for loop循环)

Kmeans算法精简版(无for loop循环)
2020-05-27
大家在学习算法的时候会学习到关于Kmeans的算法,但是网络和很多机器学习算法书中关于Kmeans的算法理论核心一样,但是代码实现过于复杂,效率不高,不方便阅读。这篇文章首先列举出Kmeans核心的算法过程 ...

机器学习中的线性回归,你理解了多少?

机器学习中的线性回归,你理解了多少?
2020-02-22
作者丨algorithmia 来源 | 大数据与人工智能 机器学习中的线性回归是一种来源于经典统计学的有监督学习技术。然而,随着机器学习和深度学习的迅速兴起,因为线性(多层感知器)层的神经网络 ...

33 个神经网络「炼丹」技巧

33 个神经网络「炼丹」技巧
2019-12-26
作者 | Andrej Karpathy 编译 | AI有道 特斯拉人工智能部门主管 Andrej Karpathy 发布新博客,介绍神经网络训练的技巧。 Andrej Karpathy 是深度学习计算机视觉领域、与领域的研究员 ...

用OpenCV等构建神经网络,这些实战经验你肯定用得上!

用OpenCV等构建神经网络,这些实战经验你肯定用得上!
2020-05-21
在我们的机器学习实验室,我们在许多高性能的机器已经积累了成千上万个小时的训练。然而,并不是只有计算机在这个过程中学到了很多东西:我们自己也犯了很多错误,修复了很多错误。 我们承认这些都是众所周知 ...

新手机器学习工程师最容易犯的6大错误

新手机器学习工程师最容易犯的6大错误
2019-12-16
作者 | Christopher Dossman 编译 | ronghuaiyang 在机器学习中,有许多方法来构建产品或解决方案,每种方法都假设不同的东西。很多时候,如何识别哪些假设是合理的并不明显。刚接触机器学 ...

8个计算机视觉深度学习中常见的Bug

8个计算机视觉深度学习中常见的Bug
2019-12-11
作者 | Arseny Kravchenko 编译 | ronghuaiyang 人是不完美的,我们经常在软件中犯错误。有时这些错误很容易发现:你的代码根本不能工作,你的应用程序崩溃等等。但是有些bug是隐藏的,这 ...

机器学习之深度学习的未来

机器学习之深度学习的未来
2019-12-09
作者 | Francois Chollet 编译 | CDA数据分析师 The future of deep learning 鉴于我们对深网的工作原理,局限性以及研究现状的了解,我们能否预测中期的发展方向?这是一些纯粹的个 ...

机器学习与深度学习核心知识点总结(二)

机器学习与深度学习核心知识点总结(二)
2019-12-03
作者 | 小小挖掘机 来源 | SIGAI 主成分分析 主成分分析是一种数据降维和去除相关性的方法,它通过线性变换将向量投影到低维空间。对向量进行投影就是对向量左乘一个矩阵,得到结果向量 ...

机器学习与深度学习核心知识点总结(一)

机器学习与深度学习核心知识点总结(一)
2019-12-02
作者 | 小小挖掘机 来源 | SIGAI 数学 1.列举常用的最优化方法 梯度下降法 牛顿法, 拟牛顿法 坐标下降法 梯度下降法的改进型如AdaDelta,AdaGrad,Adam,NAG等。 ...

OK