cda

数字化人才认证

首页 > 行业图谱 >

人工智能中的线性代数:如何理解并更好地应用它?

人工智能中的线性代数:如何理解并更好地应用它?
2019-12-10
作者 | Oleksii Kharkovyna 编译 | 机器之心 线性代数是 AI 专家必须掌握的知识,这已不再是个秘密。如果不掌握应用数学这个领域,你永远就只能是「门外汉」。当然,学习线性代数道阻且长。 ...

机器学习与深度学习核心知识点总结(一)

机器学习与深度学习核心知识点总结(一)
2019-12-02
作者 | 小小挖掘机 来源 | SIGAI 数学 1.列举常用的最优化方法 梯度下降法 牛顿法, 拟牛顿法 坐标下降法 梯度下降法的改进型如AdaDelta,AdaGrad,Adam,NAG等。 ...

从数据结构到算法:图网络方法初探

从数据结构到算法:图网络方法初探
2019-08-19
作者 | 朱梓豪 来源 | 机器之心 如果说 2019 年机器学习领域什么方向最火,那么必然有图神经网络的一席之地。其实早在很多年前,图神经网络就以图嵌入、图表示学习、网络嵌入等别名呈现出来 ...

机器学习中涉及到哪些数学工具?

机器学习中涉及到哪些数学工具?
2019-03-27
在机器学习中涉及到很多的工具,其中最重要的当属数学工具。机器学习涉及到的数据工具总共有三种,分别是线性代数、概率统计和最优化理论。在这篇文章中我们就来详细给大家介绍一下这些知识,让大家在日 ...

R语言实现决策树算法

R语言实现决策树算法
2018-06-11
R语言实现决策树算法 决策树算法的R实现 根据ppvk上的文章《基于 R 语言和 SPSS 的决策树算法介绍及应用》,只简单跑了关于R部分的代码,实验成功,简单记录下。     决策树算法简介  &nbs ...

入门 | 10个例子带你了解机器学习中的线性代数

入门 | 10个例子带你了解机器学习中的线性代数
2018-05-03
入门 | 10个例子带你了解机器学习中的线性代数 本文介绍了 10 个常见机器学习案例,这些案例需要用线性代数才能得到最好的理解。 线性代数是数学的分支学科,涉及矢量、矩阵和线性变换。 它是机 ...

基于矩阵分解的隐因子模型

基于矩阵分解的隐因子模型
2018-03-25
基于矩阵分解的隐因子模型 推荐系统是现今广泛运用的一种数据分析方法。常见的如,“你关注的人也关注他”,“喜欢这个物品的用户还喜欢。。”“你也许会喜欢”等等。 常见的推荐系统分为基于内容的推荐与 ...

常用的机器学习&数据挖掘知识点

常用的机器学习&数据挖掘知识点
2018-03-07
常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最 ...

一些常见的特征选择方法

一些常见的特征选择方法
2018-02-25
一些常见的特征选择方法 现实中产生的特征维度可能很多,特征质量参差不齐,不仅会增加训练过程的时间,也可能会降低模型质量。因此,提取出最具代表性的一部分特征来参与训练就很重要了。 通常有特征 ...

一文读懂聚类算法

一文读懂聚类算法
2018-01-11
一文读懂聚类算法 1. 聚类的基本概念 1.1 定义 聚类是数据挖掘中的概念,就是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中 ...

Python环境下的8种简单线性回归算法

Python环境下的8种简单线性回归算法
2018-01-05
本文中,作者讨论了 8 种在 Python 环境下进行简单线性回归计算的算法,不过没有讨论其性能的好坏,而是对比了其相对计算复杂度的度量。 GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/b ...

数据工作的科普总结

数据工作的科普总结
2017-11-28
数据工作的科普总结 首先说,这是一篇关于数据工作的科普文字,是我从事数据工作三年的一个小总结,因为不时会有人咨询我一些小问题,于是我大致整理了一下,主要是说了数据工作到底都包含了什么,其中关于数据 ...

基于R语言构建的电影评分预测模型

基于R语言构建的电影评分预测模型
2017-07-16
基于R语言构建的电影评分预测模型 电影评分系统是一种常见的推荐系统。现在使用R语言基于协同过滤算法来构建一个电影评分预测模型。 一,前提准备 1.R语言包:ggplot2包(绘图),recommenderlab包,resh ...

机器学习中的特征—特征选择的方法以及注意点

机器学习中的特征—特征选择的方法以及注意点
2017-07-04
机器学习中的特征—特征选择的方法以及注意点 关于机器学习中的特征我有话要说 在这次校园招聘的过程中,我学到了很多的东西,也纠正了我之前的算法至上的思想,尤其是面试百度的过程中,让我渐渐意识到 ...

大数据等最核心的关键技术:32个算法

大数据等最核心的关键技术:32个算法
2017-05-09
大数据等最核心的关键技术:32个算法 奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者 ...

《数学之美》拾遗—潜在语义索引(LSI)

《数学之美》拾遗—潜在语义索引(LSI)
2017-03-25
《数学之美》拾遗—潜在语义索引(LSI) 一、潜在语义索引的提出 潜在语义索引(LSI),又称为潜在语义分析(LSA),是在信息检索领域提出来的一个概念。主要是在解决两类问题,一类是一词多义,如“bank”一词 ...

简单易学的机器学习算法—主成分分析(PCA)

简单易学的机器学习算法—主成分分析(PCA)
2017-03-24
简单易学的机器学习算法—主成分分析(PCA) 一、数据降维     对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维 ...

大数据挖掘:数据模型多了,应该怎么管

大数据挖掘:数据模型多了,应该怎么管
2016-11-24
大数据挖掘:数据模型多了,应该怎么管 没有数据分析和建模能力,肯定难以提升业务;然而,如果模型泛滥、没有得到有效的统筹管理,其提升度恐怕也非常有限,还可能制造各种混乱。为了解决这样的问题,“模型工 ...

数据模型多了,应该怎么管

数据模型多了,应该怎么管
2016-11-22
数据模型多了,应该怎么管 随着近年来大数据挖掘概念的兴起,数据分析建模的思想已经深入人心,于是会建模、能建模的人也就越来越多。他们可能是资深大拿,分析建模、结果解读手到擒来全搞定,但也可能是专业 ...
短文本主题建模方法
2016-11-22
短文本主题建模方法 1. 引言 许多数据分析应用都会涉及到从短文本中提取出潜在的主题,比如微博、短信、日志文件或者评论数据。一方面,提取出潜在的主题有助于下一步的分析,比如情感评分或者文本分类模型 ...

OK