cda

数字化人才认证

首页 > 行业图谱 >

PyTorch中的扩张卷积(空洞卷积)是怎么实现的?
2023-04-07
扩张卷积,也被称为空洞卷积,是一种在深度学习中常用的卷积操作,可以有效地增加模型感受野和步幅,同时减少参数数量。 在PyTorch中,扩张卷积是通过使用nn.Conv2d()函数来实现的。该函数有四个必填参数:in_channe ...

如何进行多变量LSTM时间序列预测未来一周的数据?

如何进行多变量LSTM时间序列预测未来一周的数据?
2023-04-07
随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多 ...
神经网络中难样本和噪音样本有什么区别?
2023-04-07
在神经网络中,难样本和噪音样本是两个重要的概念,它们在模型训练和预测过程中起着不同的作用。 首先,噪音样本是指在数据集中存在的不符合真实分布的异常、异常值或错误标注的数据样本。这些样本可能会对模型的性 ...
深度学习网络框架里,神经元数量怎么确定?
2023-04-07
在深度学习网络框架中,确定神经元数量是一个重要的设计决策。神经元数量越多,模型的能力和复杂度就越高,但同时也会增加计算和存储资源的需求,可能导致过拟合等问题。因此,正确地确定神经元数量对于设计高效和准 ...

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?
2023-04-07
当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准 ...
TensorFlow和spark的ml以及python的scikit-learn 三者的区别是什么?
2023-04-07
TensorFlow, Spark的ML和Python的Scikit-learn是三种不同的机器学习工具,它们各自有其独特的特点和优势。以下是它们之间的主要区别。 TensorFlow TensorFlow是由Google开发的一个基于图形计算的深度学习框架。它 ...

R语言逻辑回归(logistic regression)如何处理分类变量?

R语言逻辑回归(logistic regression)如何处理分类变量?
2023-04-07
在逻辑回归中,分类变量是常见的特征。分类变量指的是只能取有限数量的离散值的变量,比如性别、国家等。在R语言中,处理分类变量有多种方法,下面将介绍其中几种常见的方法。 一、虚拟变量(dummy variable) ...

如何将卡尔曼滤波与神经网络进行结合??

如何将卡尔曼滤波与神经网络进行结合??
2023-04-07
卡尔曼滤波和神经网络是两种不同的模型,卡尔曼滤波主要用于估计状态变量的值,而神经网络则是一种强大的模式识别工具。然而,将它们结合起来可以利用它们各自的优点,并提高预测、估计和控制的准确性。 在开始 ...
如果有无限数量的数据训练神经网络,结果会如何?
2023-04-07
如果给神经网络提供无限数量的数据进行训练,那么神经网络将能够更好地理解真实世界的复杂性。这样的训练可以帮助神经网络克服过拟合和欠拟合等常见问题,同时也可以提高模型的准确性和鲁棒性。 然而,实际上不存在 ...

SPSS中标准化的因子载荷怎么得出的?

SPSS中标准化的因子载荷怎么得出的?
2023-04-07
标准化的因子载荷是SPSS中进行因子分析时的一个重要结果。它表示每个变量在因子中所占的比例,从而帮助研究人员确定哪些变量对于某一因子的影响较大。本文将简要介绍SPSS中如何计算标准化的因子载荷并解释其含义。 ...
数据分析师业务理解怎么写?
2023-04-07
数据分析师业务理解是指数据分析师能够从业务的角度,了解数据的来源、质量、影响因素、价值和应用场景,能够根据业务需求设计合理的数据分析方案和指标体系,能够通过数据分析帮助业务部门解决 ...
如何理解数据分析师?
2023-04-07
数据分析师是指在不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。数据分析师的工作内容和能力要求可能因行业和岗位而异,但一般来说,需要掌握以下几方面 ...
数据分析师文科生如何?
2023-04-07
数据分析师是一个非常有前途的职业,需要具备多方面的能力和知识。数据分析师的主要工作是利用数据来发现问题、提供洞察、支持决策、优化流程等。为了做好这些工作,数据分析师需要掌握以下几个方面的技能: ...
文科生如何做数据分析师?
2023-04-07
文科生如何做数据分析师?这是一个很好的问题,因为数据分析师是一个非常有前途的职业,需要具备多方面的能力和知识。数据分析师的主要工作是利用数据来发现问题、提供洞察、支持决策、优化流程等。为了做好这些工 ...

MySQL 的 B Tree 索引树到底该怎么画?

MySQL 的 B Tree 索引树到底该怎么画?
2023-04-06
MySQL的B树索引是一种非常重要的数据结构,它被广泛用于关系型数据库中。在MySQL中,每个表都至少有一个索引,用于快速查找数据。因此,了解如何绘制MySQL的B树索引树对于任何想要深入了解MySQL内部工作原理的人来说 ...
LSTM的cell个数是如何设置?
2023-04-04
LSTM(长短时记忆网络)是一种常用的循环神经网络(RNN)结构,具有较强的序列建模能力。在使用LSTM进行训练时,其中一个重要的超参数是LSTM中cell(记忆单元)的个数,也称为隐藏节点数。在本文中,我们将探讨如何 ...
catboost原理介绍,与lightgbm和xgboost比较优劣?
2023-04-03
CatBoost是一种基于梯度提升树的机器学习算法,它在处理分类和回归问题时都具有优秀的性能。CatBoost最初由Yandex团队开发,在2017年推出,并迅速受到了广泛关注和应用。 CatBoost与LightGBM和XGBoost都属于GBDT(Gr ...
caffe中的deconvolution和upsample的区别?
2023-04-03
在深度学习中,deconvolution和upsample是两种常见的图像处理技术,它们都可以用于将输入图像或特征图扩大到更高分辨率。但是,尽管这两种技术表面上看起来相似,它们之间有着重要的区别。 一、deconvolution Deconv ...
怎么用pytorch对训练集数据做十折交叉验证?
2023-04-03
PyTorch是一种流行的深度学习框架,它提供了许多方便的工具来处理数据集并构建模型。在深度学习中,我们通常需要对训练数据进行交叉验证,以评估模型的性能和确定超参数的最佳值。本文将介绍如何使用PyTorch实现10折 ...

在神经网络中,先进行BatchNorm还是先运行激活函数?

在神经网络中,先进行BatchNorm还是先运行激活函数?
2023-04-03
在神经网络中,BatchNorm(批归一化)和激活函数是两个关键的组成部分,对于它们的顺序,存在不同的观点和实践。本文将从理论和实践两方面探讨这个问题,并提出一个综合考虑的解决方案。 理论分析 BatchNorm ...

OK