大数据分析案例:这些大酒店用大数据和分析技术对我们做了什么?
酒店和酒店服务业每天在接待数以百万计的旅客,每一个旅客在办理入住手续时自然都抱有不同的期望。满足这些期望是让客人成为回头客的关键,如今酒店和休闲设施运营商日益借助先进的分析解决方案,了解如何做到让客人满意。
此外,虽然它们的营销部门不愿承认,但事实上,不是每个客人在酒店和休闲设施运营商的眼里都是一样的。有些客人只想入住和退房手续尽量简便,而有些客人会将大把大把的钱扔在美食、娱乐、体育活动和水疗等项目上。在今天的市场,能够锁定对某个商家来说总体终身价值更高的那些客人显得至关重要,但客人的终身价值并非通过观察其在一次到访过程中的消费行为就会显露无遗。
比如说,一个平时挥金如土的客人退休后在享受“一生中最后一个假期”,以后不太可能天天过着这种奢侈生活。与此同时,一个节俭的商务客人平常订经济房,额外服务方面花费也很少,他可能是经常出差的商务人士,如果酒店满足他的要求,他可能会频频光顾,因而其终身价值比较高。大数据分析技术就有助于区别这一点。
分析技术在酒店业的第三大用途围绕“收益管理”。这种管理方法旨在确保每间客房获得最优价格――既考虑到全年的淡季和旺季,又考虑到天气和当地活动等其他因素,这些会影响入住客人的数量(和类型)。
分析技术可以应用于所有这些领域,虽然酒店及酒店服务业在奉行数据分析至上的理念上落后于零售业和制造业等其他行业,但这种情况可能在开始发生变化。
如今许多酒店在使用大数据和分析技术。
一个开创性的例子包括美国经济型连锁酒店红屋顶酒店(Red Roof Inn),在2013/2014年业绩创纪录的冬季旺期,由于当时航班取消率在3%左右――这意味着每天有90000名乘客滞留,而这家酒店旗下的许多酒店毗邻各大机场,因而获得了出色的业绩。这家酒店的营销和分析团队协同工作,充分利用天气状况和航班取消方面谁都可以使用的公共数据集。知道大多数客人在移动设备上使用互联网搜索来查找附近住宿后,启动了一项颇有针对性的营销活动,针对最有可能受到影响的那些地区的移动设备用户。这使得其在采用这项策略的地区的营业额增长了10%。
已被公认为创新使用分析技术的另一家美国连锁店是Denihan Hospitality,这家集团在美国拥有多家精品酒店,包括James和Affinia 酒店等品牌。Denihan使用IBM分析技术来汇总连锁店的交易数据和客户数据,并与非结构化数据结合起来,比如客人在TripAdvisor等评价网站上所留的反馈意见和评论。该公司负责商业智能的副总裁Menka Uttamchandani说:“每家公司都有大量的数据,关键在于怎么处理这些数据,比如提供相关的仪表板、点击深入分析报表和分析洞察力,这些能够带来竞争优势。”
这家连锁店评估客户反馈信息和交易数据后,做出了数据驱动的战略性决策,重新布置了许多客房,以便更好地迎合商务或休闲旅客,为深受旅行家庭喜爱的客房提供更多的浴室存放架,并提供种类更齐全的房内设施,比如客人会喜欢的小厨房。
这家连锁店甚至将分析技术交到酒店一线工作人员的手里,他们配备的智能手机上装有仪表板,那样他们就能预测某个客人在入住期间可能想要什么或需要什么,比如饭馆饮食、礼宾服务或者浏览当地景点等方面。客房勤杂人员可以收到实时信息,了解某间客房的客人是不是需要另添一个枕头,或者凌晨2点叫客房服务员送来三明治和咖啡。
当然,与大多数行业一样,分析技术在酒店服务业所做的工作大部分侧重于营销。总的目标常常是策划个性化营销活动,以电子邮件或针对性社交媒体广告这种形式来开展。这就需要分析关于到访客人的所有可用信息,为此需要收集客人反馈、交易活动、忠诚度计划的使用情况以及购买的第三方人口统计数据。然后,这些数据可以用来决定提供餐厅吃饭免费还是附近影院免费影票的服务更有可能吸引终身价值高的客人来预订。
然而在万豪酒店,大数据并不局限于营销,它已用在这家连锁酒店的业务运营的各个方面。非结构化和半结构化数据集(比如天气预报和当地活动时间表)用来预测需求,并确定每一间客房在全年的价格。这让万豪酒店能够制定最合理的房价--这在当下至关重要,因为如今客户习惯于扫描价格比较服务、寻找最实惠的酒店,以便省钱。
喜达屋酒店及度假村集团在世界各地拥有1200家酒店,它是另一家大力投资于大数据和分析技术的大型连锁酒店。他们的系统也分析当地及世界经济因素、活动和天气预报,以此优化房价。由于知道了北美核心客户群的本国天气如何影响那些客户在阳光灿烂的加勒比海度假一周愿意花的钱,他们知道了什么时候降低房价或开展营销促销活动最合适。这个策略让其每间客房的收入(这是酒店的一个关键指标)增长了近5%。
酒店和酒店服务业也许刚开始使用大数据,但是它有令人羡慕的数据数量和种类可供利用。从订房那一刻起到退房那一刻,客户留下的第一条数据痕迹,都被分析人员开始认真地转变成可付诸行动的洞察力。一旦酒店服务业满怀信心地干起来,我预计我们会看到这个行业会有更多的创新,应该会为我们这些客人带来更令人满意的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31