数据的误区及自身业务
现在做移动互联网,无论是做社交的也好,做内容向的也好,他就是不跟别人说我们是用数据来分析用户的行为,以此迅速占领用户。不这样说他都不好意思。都说大数据,在做大数据以前,我们有一些基本的误区要跟大家先说明一下。
什么意思呢,会有两种很有奇怪的观点:
1. 什么都要靠数据去支撑。比如我们把按钮从左边换到右边,从红色换成黄色。这个东西一定要有什么数据分析团队、数据分析师、产品经理在哪儿反复打磨。最后跟我们说一句,按钮从以前的100像素换到了105像素。这是很无聊的一件事情,但是这个要用数据去验证,你知道吗?
2. 秉承数据无用论。就是说,数据有什么用呢?还不如我经验来的有用。
这两种观点,基本上都是错的。
数据量多真的有用吗?
数据量多不一定有用。这是我在上一家公司做了三年以后得出的一个非常沉痛的教训。数据太多并没有什么卵用,数据要有用,他一定要有关联、有联系。不然,白存着那些每天几十个G的那些数据,导又导不出来,联系又没法联系,形成一个个,我称之为孤岛数据(z这样的东西)。并没有什么用的。
孤岛数据只能读出来片面的现象,他连一个结论都读不出来,所以你的技术团队高兴怎么做就怎么做。要以结果为导向,以目标为出发。他跟技术其实没有太多的关系。你的用户量很少,数据不多,他没关系的。后面我会给大家举一些比较有意思的例子。
在线调查
还有一种是这样,这个是在公司里,市场运营还有数据运营,他们经常使用的一种手法,叫做在线调查。我们假模假样的做一个东西,我们新版发布了,我们想收集一下用户的需求。
咱们的产品团队里面一般会有一个产品助理,去出一个在线问卷调查,大概有一百个问题。完了,产品经理说,一百个太多了,我们五十个。上报到总监,总监说五十个太多了,三十个。上报到老板那里,老板说,三十个也太多了,十个吧。
然后假模假样的出了一份十个问题的问卷调查,说我们收集到了一万分的用户调查报告,我给你做成曲线图、饼图、折叠图。这些东西还好我没有做过,都是别人做。
这些东西有用吗?我明确告诉大家,这个东西没有用。现在没用,以后也没用,以后就不要做了。
为什么呢?是这样的,首先问卷调查,他是一个很古老的行业。她有一个非常严谨的一些方法。问卷调查最有用的地方,是在前期把用户筛选掉。这是问卷调查最有用的地方。比如说我可以Push到五万个人,问卷调查是把五万个人里面四万九千五百个人删掉他,取消掉他。我只要那五百个非常有用,非常精准,非常符合我的目标用户的那五百个人就够了。
所以不是说越多越好,那都是一些垃圾数据。你从一开始,对用户没有过滤,你这个问卷调查就是垃圾。而且,这种情况下,你还把你本来想问的那一百个问题,给压缩成了十个问题。这十个问题还没有什么质量。新版本你喜不喜欢,A喜欢,B不喜欢。这问题你问他干嘛呢?
知识误区:
还有一个,我称之为知识误区。我们但凡有一点机会,都会去接触一些海量的数据。通过各种各样的途径,通过一些统计学的方法,包括归纳、总结、折线图、饼图、曲线图。就是说,这些东西有用吗?有用的,起辅助作用。前提是所谓用到的简单或者复杂的数据方法。
你要正确的认知,举个例子。
大家都知道平均数吧,平均数有多少种?有算数平均数,有几何平均数。他们有什么用?在什么场合下用什么样的平均数,去做一个对我们整个的格局、整个的用户群的一个调查?你并不知道。第二个,平均数最大的问题就是,我有101个用户,这100个用户身高只有1米,有一个用户身高有100米。你说我们平均出来的这个平均数有用吗?半毛钱卵用没有。所以这个就是平均数最大的问题所在。
所以什么意思呢?我们大家使用数学方法一定要知道这个方法,适用于什么场合,会有什么限制。当然了忽悠老板除外,忽悠老板什么方法都是可以的。
统计相关性:
还有一个问题是,统计相关性。这个问题是,统计学一直没有解决的问题。就是统计学试图用统计相关性,来把真实的相关性给取消掉。什么意思?我举个例子,比如今天有六十个人,来听我的吹牛逼。然后外面天空是放晴的。我们做市场调查,在此时此刻,全中国一共有两千场,大概六十个人参加的,有一个工作十年左右的人在这边吹牛逼,天空是放晴的。什么叫统计相关性?即,以后中国大陆有两千场左右,下午三点多的,六十个人左右的,这样一个吹牛逼活动,天空一定是放晴的。你认为这合理吗?胡说八道对吧?
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21