数据的误区及自身业务
现在做移动互联网,无论是做社交的也好,做内容向的也好,他就是不跟别人说我们是用数据来分析用户的行为,以此迅速占领用户。不这样说他都不好意思。都说大数据,在做大数据以前,我们有一些基本的误区要跟大家先说明一下。
什么意思呢,会有两种很有奇怪的观点:
1. 什么都要靠数据去支撑。比如我们把按钮从左边换到右边,从红色换成黄色。这个东西一定要有什么数据分析团队、数据分析师、产品经理在哪儿反复打磨。最后跟我们说一句,按钮从以前的100像素换到了105像素。这是很无聊的一件事情,但是这个要用数据去验证,你知道吗?
2. 秉承数据无用论。就是说,数据有什么用呢?还不如我经验来的有用。
这两种观点,基本上都是错的。
数据量多真的有用吗?
数据量多不一定有用。这是我在上一家公司做了三年以后得出的一个非常沉痛的教训。数据太多并没有什么卵用,数据要有用,他一定要有关联、有联系。不然,白存着那些每天几十个G的那些数据,导又导不出来,联系又没法联系,形成一个个,我称之为孤岛数据(z这样的东西)。并没有什么用的。
孤岛数据只能读出来片面的现象,他连一个结论都读不出来,所以你的技术团队高兴怎么做就怎么做。要以结果为导向,以目标为出发。他跟技术其实没有太多的关系。你的用户量很少,数据不多,他没关系的。后面我会给大家举一些比较有意思的例子。
在线调查
还有一种是这样,这个是在公司里,市场运营还有数据运营,他们经常使用的一种手法,叫做在线调查。我们假模假样的做一个东西,我们新版发布了,我们想收集一下用户的需求。
咱们的产品团队里面一般会有一个产品助理,去出一个在线问卷调查,大概有一百个问题。完了,产品经理说,一百个太多了,我们五十个。上报到总监,总监说五十个太多了,三十个。上报到老板那里,老板说,三十个也太多了,十个吧。
然后假模假样的出了一份十个问题的问卷调查,说我们收集到了一万分的用户调查报告,我给你做成曲线图、饼图、折叠图。这些东西还好我没有做过,都是别人做。
这些东西有用吗?我明确告诉大家,这个东西没有用。现在没用,以后也没用,以后就不要做了。
为什么呢?是这样的,首先问卷调查,他是一个很古老的行业。她有一个非常严谨的一些方法。问卷调查最有用的地方,是在前期把用户筛选掉。这是问卷调查最有用的地方。比如说我可以Push到五万个人,问卷调查是把五万个人里面四万九千五百个人删掉他,取消掉他。我只要那五百个非常有用,非常精准,非常符合我的目标用户的那五百个人就够了。
所以不是说越多越好,那都是一些垃圾数据。你从一开始,对用户没有过滤,你这个问卷调查就是垃圾。而且,这种情况下,你还把你本来想问的那一百个问题,给压缩成了十个问题。这十个问题还没有什么质量。新版本你喜不喜欢,A喜欢,B不喜欢。这问题你问他干嘛呢?
知识误区:
还有一个,我称之为知识误区。我们但凡有一点机会,都会去接触一些海量的数据。通过各种各样的途径,通过一些统计学的方法,包括归纳、总结、折线图、饼图、曲线图。就是说,这些东西有用吗?有用的,起辅助作用。前提是所谓用到的简单或者复杂的数据方法。
你要正确的认知,举个例子。
大家都知道平均数吧,平均数有多少种?有算数平均数,有几何平均数。他们有什么用?在什么场合下用什么样的平均数,去做一个对我们整个的格局、整个的用户群的一个调查?你并不知道。第二个,平均数最大的问题就是,我有101个用户,这100个用户身高只有1米,有一个用户身高有100米。你说我们平均出来的这个平均数有用吗?半毛钱卵用没有。所以这个就是平均数最大的问题所在。
所以什么意思呢?我们大家使用数学方法一定要知道这个方法,适用于什么场合,会有什么限制。当然了忽悠老板除外,忽悠老板什么方法都是可以的。
统计相关性:
还有一个问题是,统计相关性。这个问题是,统计学一直没有解决的问题。就是统计学试图用统计相关性,来把真实的相关性给取消掉。什么意思?我举个例子,比如今天有六十个人,来听我的吹牛逼。然后外面天空是放晴的。我们做市场调查,在此时此刻,全中国一共有两千场,大概六十个人参加的,有一个工作十年左右的人在这边吹牛逼,天空是放晴的。什么叫统计相关性?即,以后中国大陆有两千场左右,下午三点多的,六十个人左右的,这样一个吹牛逼活动,天空一定是放晴的。你认为这合理吗?胡说八道对吧?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31