企业大数据运营核心数据能力探讨
1 背景和需求
当今企业面临内外部重重挑战,例如市场竞争加剧、利润下滑、企业增长放缓等,而伴随移动互联网迅猛发展、社会大众观念意识进步和消费模式转变,社会化需求呈爆炸式增长,这为各行业带来巨大的市场空间,对企业是一个新的历史机遇。
那么,企业应如何应对挑战并把握历史机遇?在当今大数据时代,企业应围绕高效率、高效益和提升客户服务品质的战略目标,以数据说话,全面了解企业运营状况、深入发现企业存在的问题,体系化剖析并提出改进建议,从而促进企业精细化运营持续优化;同时,企业还需发掘大数据所隐藏的客户诉求,洞察客户需求,创造性发掘新的价值增长点,从而帮助企业实现持续盈利。
为了切实发挥大数据对企业内部精细化运营和外部商机发掘的价值,企业需要锻造大数据运营能力,借助成熟的商业智能和大数据技术,对企业内外部结构化/非结构化数据进行实时(准实时)捕获、规整、深度加工挖掘,从数据中提炼有价值的信息和知识,面向企业各层级人员定制提供能解决实际业务问题的数据应用。
2 大数据核心能力
企业应锻造什么样的大数据核心运营能力呢?大数据运营的核心能力框架如下图所示:
如图1所示,大数据运营核心能力框架包括数据价值能力、数据基础能力。首先,企业应打造针对数据自身的数据基础能力;然后,基于数据基础能力构建数据价值能力,建设个性化业务应用。
1. 大数据价值能力
大数据价值能力构建在大数据基础能力之上,以企业战略目标为导向,提供面向不同人员的价值应用,总体上可分为三类:为企业内部领导、管理、执行及一线各层级人员提供精细化运营相关的数据应用、为合作伙伴提供可带来利润的产品型数据应用,以及为最终客户提供可提升客户体验和感知的服务型数据应用。
2. 大数据基础能力
大数据基础能力主要包括大数据规整能力、数据管控能力、数据交换共享能力、知识沉淀积累和供应能力,以及对数据价值应用的支撑能力。
高效的大数据规整能力
对企业来说,大数据规整能力用于帮助企业摸清数据资产家底,包括企业内外部数据的高效获取、整合、加工、存储,形成数据模型标准化、数据分类和编码统一、数据跨业务领域融合的企业级数据集中存储,提供企业级统一信息视图。
除了要继续提供传统的结构化数据处理能力外,还需要加入对诸如音频、视频、文档、流数据等非结构化数据的处理能力,以及对日志数据、微博、社交媒体信息等半结构化数据的处理能力。要能够将非结构化/半结构化数据转换成可分析挖掘的结构化数据。
体系化的数据管控能力
企业通过大数据规整能力形成企业数据资产的统一视图的过程,以及后续提供使用的过程,均需进行全程数据治理,确保数据质量可靠、受控使用、数据可理解、数据资源配置可持续优化等。因此,需要对数据加工处理的全过程以及数据整个生命周期的各种活动进行规范化、体系化管理。
数据管控体系主要包括管控目标、管控对象、管控措施、管控组织保障、管控流程制度和规范标准,以及管控平台支撑。管控对象主要有元数据、数据质量、数据安全、数据生命周期、数据模型及数据标准等,一些企业也通过数据管控实施企业级的统一主数据管理,以此解决跨系统流转的企业核心业务数据的一致性和协同问题。
集中的数据交换共享能力
企业花费力气形成自己的数据中心存储后,除了给各类用户提供数据服务,还需要向企业的各类业务系统开放共享,使数据中心与业务系统形成数据闭环,实现业务协同。为此需要建设统一的交换共享平台,集中管理数据交换共享接口、监控接口运作,实现企业数出一门、高效共享。
持续的知识沉淀供应能力
企业日常决策、管理、生产、业务运营、客户服务、资源保障、财务运营等过程,以及IT系统规划、建设和运维过程,都将持续形成各自的专业知识。企业需要提供知识的收集、分类、管理维护和嵌入式使用能力,及时收集知识并有效管理,给各层级人员提供方便灵活的借鉴参考,从而有效提升企业运营效率和质量,降低运营成本。
可扩展的数据应用支撑能力
数据应用支撑能力指为数据中心自有及第三方的大数据应用提供统一的载体,面向各层级用户,提供便捷灵活、多种终端的随时随地访问支撑,还包括数据查询、数据挖掘、数据可视化展现(例如GIS)等应用支撑能力。
3 结束语
企业精细化运营是当今企业发展的必经之道,为了切实实现从粗犷式运营向精细化运营转变,企业需要以数据说话,把握当今大数据机遇,锻造企业自身的大数据运营能力,从而助力企业内部精细化运营及外部商机发掘。
数据分析咨询请扫描二维码
在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16在当今数据驱动的世界中,数据分析师的角色越发重要。他们不仅承担着从复杂的数据集中抽取洞察的任务,还需要用技术和洞察力引导 ...
2024-12-16数据分析师的日常工作就像是在数据的海洋中寻找宝藏,而掌握函数的使用技巧,是让这一探索旅程更加高效和精准的关键。在分析这个 ...
2024-12-16