企业大数据运营核心数据能力探讨
1 背景和需求
当今企业面临内外部重重挑战,例如市场竞争加剧、利润下滑、企业增长放缓等,而伴随移动互联网迅猛发展、社会大众观念意识进步和消费模式转变,社会化需求呈爆炸式增长,这为各行业带来巨大的市场空间,对企业是一个新的历史机遇。
那么,企业应如何应对挑战并把握历史机遇?在当今大数据时代,企业应围绕高效率、高效益和提升客户服务品质的战略目标,以数据说话,全面了解企业运营状况、深入发现企业存在的问题,体系化剖析并提出改进建议,从而促进企业精细化运营持续优化;同时,企业还需发掘大数据所隐藏的客户诉求,洞察客户需求,创造性发掘新的价值增长点,从而帮助企业实现持续盈利。
为了切实发挥大数据对企业内部精细化运营和外部商机发掘的价值,企业需要锻造大数据运营能力,借助成熟的商业智能和大数据技术,对企业内外部结构化/非结构化数据进行实时(准实时)捕获、规整、深度加工挖掘,从数据中提炼有价值的信息和知识,面向企业各层级人员定制提供能解决实际业务问题的数据应用。
2 大数据核心能力
企业应锻造什么样的大数据核心运营能力呢?大数据运营的核心能力框架如下图所示:
如图1所示,大数据运营核心能力框架包括数据价值能力、数据基础能力。首先,企业应打造针对数据自身的数据基础能力;然后,基于数据基础能力构建数据价值能力,建设个性化业务应用。
1. 大数据价值能力
大数据价值能力构建在大数据基础能力之上,以企业战略目标为导向,提供面向不同人员的价值应用,总体上可分为三类:为企业内部领导、管理、执行及一线各层级人员提供精细化运营相关的数据应用、为合作伙伴提供可带来利润的产品型数据应用,以及为最终客户提供可提升客户体验和感知的服务型数据应用。
2. 大数据基础能力
大数据基础能力主要包括大数据规整能力、数据管控能力、数据交换共享能力、知识沉淀积累和供应能力,以及对数据价值应用的支撑能力。
高效的大数据规整能力
对企业来说,大数据规整能力用于帮助企业摸清数据资产家底,包括企业内外部数据的高效获取、整合、加工、存储,形成数据模型标准化、数据分类和编码统一、数据跨业务领域融合的企业级数据集中存储,提供企业级统一信息视图。
除了要继续提供传统的结构化数据处理能力外,还需要加入对诸如音频、视频、文档、流数据等非结构化数据的处理能力,以及对日志数据、微博、社交媒体信息等半结构化数据的处理能力。要能够将非结构化/半结构化数据转换成可分析挖掘的结构化数据。
体系化的数据管控能力
企业通过大数据规整能力形成企业数据资产的统一视图的过程,以及后续提供使用的过程,均需进行全程数据治理,确保数据质量可靠、受控使用、数据可理解、数据资源配置可持续优化等。因此,需要对数据加工处理的全过程以及数据整个生命周期的各种活动进行规范化、体系化管理。
数据管控体系主要包括管控目标、管控对象、管控措施、管控组织保障、管控流程制度和规范标准,以及管控平台支撑。管控对象主要有元数据、数据质量、数据安全、数据生命周期、数据模型及数据标准等,一些企业也通过数据管控实施企业级的统一主数据管理,以此解决跨系统流转的企业核心业务数据的一致性和协同问题。
集中的数据交换共享能力
企业花费力气形成自己的数据中心存储后,除了给各类用户提供数据服务,还需要向企业的各类业务系统开放共享,使数据中心与业务系统形成数据闭环,实现业务协同。为此需要建设统一的交换共享平台,集中管理数据交换共享接口、监控接口运作,实现企业数出一门、高效共享。
持续的知识沉淀供应能力
企业日常决策、管理、生产、业务运营、客户服务、资源保障、财务运营等过程,以及IT系统规划、建设和运维过程,都将持续形成各自的专业知识。企业需要提供知识的收集、分类、管理维护和嵌入式使用能力,及时收集知识并有效管理,给各层级人员提供方便灵活的借鉴参考,从而有效提升企业运营效率和质量,降低运营成本。
可扩展的数据应用支撑能力
数据应用支撑能力指为数据中心自有及第三方的大数据应用提供统一的载体,面向各层级用户,提供便捷灵活、多种终端的随时随地访问支撑,还包括数据查询、数据挖掘、数据可视化展现(例如GIS)等应用支撑能力。
3 结束语
企业精细化运营是当今企业发展的必经之道,为了切实实现从粗犷式运营向精细化运营转变,企业需要以数据说话,把握当今大数据机遇,锻造企业自身的大数据运营能力,从而助力企业内部精细化运营及外部商机发掘。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13