透视数据中心变更 应对“大数据”分析
到目前为止,你的大数据分析和商业智能项目还在顺畅地自行运转。但从长远来看,通过对现有架构进行简单扩展来保持顺畅的数据访问可能不是最好的解决办法。
请考虑以下“大数据”特性:
·以网页上为主(不属于先前的内部数据传送)
·涉及多个云环境
·与社交媒体应用紧密关联,例如Facebook, Twitter和Linkedin
·规模空前
·数据有时 “不洁净”,甚至不可用
·数据大部分是非结构化
·至少要引入几种新工具,例如Apache的Hadoop和Hive,以及graph/triple存储
分开来看,每种特性都可能构成现有数据仓库设置的一种变体。组合起来,这些特性代表了一种与众不同的操作环境,在规划时必须深入到每项特性,分别对待。也就是说,首先你要了解,基于未来可能的需求,哪种架构最适合大数据分析。然后了解,如何能够把它与现有的数据中心架构(也可能是数据仓库型架构)结合起来。
那么未来有哪些可能性需求呢?有迹象表明,每个机构都会想要在下列特性中寻求一个独特的组合:
1.为了维护客户忠诚度和出于营销目的,对中型客户的社交媒体数据进行有目标访问--无需实时数据;
2.同样,对于预期销售而言也是需要的,但实时数据将会带来更大价值;
3.出于安全考虑,当网页浏览者试图访问公司数据时,有必要对该访问者的社交媒体数据进行少量实时访问;
4.实时访问“战略威胁”数据,例如,对公司的负面宣传信息或是给公司造成不良影响的灾难信息,通常来讲造成的影响较小,但有时波及范围也很广。
5.为了进行市场分析对大量大数据进行访问--无需实时数据;
6.为了开展具体行业或具体机构新产品研发, 对大量和超大量社交媒体数据进行访问。这里,同样不需要实时数据,但是访问速度越快效果越好。
上述组合要求决定了通常的数据需求量和交付速度,以及在“数据洁净度”和“数据及时性”方面的折衷取舍。
我们现在来看看,针对这些个案的最优架构:
1.访问目标客户的数据,你可能需要在每朵云上安装查询工具,满足内部数据存储需要,在不至于向竞争对手披露信息前提下对数据进行分析。
2.对于目标预期和销售过程数据,你可能需要在每朵云上添加本地数据库,方便针对特定目标信息进行快速交付。
3.针对安全扫描,你可能需要在Hadoop旁边部署能实现告警和单用户查询的软件,并能把结果信息直接反馈给内部管理员。
4.对于“战略威胁”数据,你可能需要在每朵云上建立高效,高容量的本地数据库,并且数据库相互间能跨云联合进行协作,可执行预分析。如果可能的话,在威胁抵达数据中心或单位其它部门前,该消息将直接反馈到系统,系统对此自动做出回应。
5.对于市场分析,你可能需要云-本地“缓存”的高性能数据库,能帮助过滤数据。这样的话,可以把数据压缩到数据仓库要求的大小,而且可能的话,还能对数据进行预清洁。而现有的像extract,
transform, load (ETL)这些工具还无法适应新型数据的这些要求。
6.对于研发,你可能需要内部且独立的分析数据库,同时要有允许跨云查询的数据联合功能。
假设你需要所有这六项内容?那么你要考虑:
·数据联合和跨数据库查询软件,诸如Composite Software公司和Denodo公司的产品
·高性能和大容量数据库技术,例如内存和柱体技术,来自于EMC Greenplum公司,或者Sybase IQ公司的解决方案。
·低成本,灵活性的,云适应型查询/分析工具,例如Birst,或者Tableau.
·用于研发的内部网状架构
那么,现在要如何把它与现有架构相结合呢?通常根据企业的规模,解决途径可划分为下列两大阵营:
1.中小型企业(SMBs)往往没有数据仓库,即使有,功能也不齐全。那样的话,在必要的数据仓库性能开始产生之际,能在云上尽量运行的PaaS架构是一个好选择。
2.大型企业有着大型主机,小型服务器群组,数据仓库,数据集市,以及架构中现有基础设施,因此确实要创建一个PaaS架构。最好采用像IBM公司这样的现行供应商提供的方案,把公共云上的PaaS架构与现有商业智能/分析/数据仓库架构相结合。
综上所述,不要认为,把大量大数据从一个云直接吸纳到数据仓库是最理想的解决方案。因为当你这么做时,你的竞争对手将会利用他们的IT资源对其顾客进行有针对性的,更深层的灵活分析,并推动他们的品牌深入你的市场。在内部分析和云分析功能之间设置防火墙是一回事,不做任何公共驻云分析又是另一回事。简言之:
·要接受:部分分析需在企业外部进行
·要承认:大型而且“不洁净”数据需要分别处理
要同意:为获得最佳效果,大型数据和传统数据需要有独立而又互相协作的架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06