现在很多行业都已经开始利用大数据来提高销售, 降低成本, 精准营销等等,然而, 其实大数据在网络安全与信息安全方面也有很长足的应用。
通过大数据, 人们可以分析大量的潜在安全事件, 找出它们之间的联系从而勾勒出一个完整的安全威胁。 通过大数据, 分散的数据可以被整合起来, 使得安全人员能够采用更加主动的安全防御手段。
今天, 网络环境极为复杂, APT 攻击以及其他一些网络攻击可以通过对从不同数据源的数据的搜索和分析来对安全威胁加以甄别, 要做到这一点, 就需要对一系列数据源的进行监控, 包括 DNS 数据, 命令与控制( C2) , 黑白名单等。 从而能够把这些数据进行关联来进行发囧。
企业针对安全的大数据分析下面是一些要点:
DNS 数据
DNS 数据能够提供一系列新注册域名, 经常用来进行垃圾信息发送的域名, 以及新创建的域名等等, 所有这些信息都可以和黑白名单结合起来, 所有这些数据都应该收集起来做进一步分析。
如果自有 DNS 服务器, 就能过检查那些对外的域名查询, 这样可能发现一些无法解析的域名。 这种情况就可能意味着你检测到了一个“域名生成算法”。 这样的信息就能够让安全团队对公司网络进行保护。 而且如果对局域网流量数据日志进行分析的话 , 就有可能找到对应的受到攻击的机器。
命令与控制( C2 )系统
把命令与控制数据结合进来可以得到一个 IP 地址和域名的黑名单。 对于公司网络来说, 网络流量绝对不应该流向那些已知的命令与控制系统。 如果网络安全人员要仔细调查网络攻击的话, 可以把来自 C2 系统的流量引导到公司设好的“ 蜜罐 ”机器上去。
安全威胁情报
有一些类似与网络信誉的数据源可以用来判定一个地址是否是安全的。 有些数据源提供“是”与“否”的判定, 有的还提供一些关于威胁等级的信息。 网络安全人员能够根据他们能够接受的风险大小来决定某个地址是否应该访问。
网络流量日志
有很多厂商都提供记录网络流量日志的工具。 在利用流量日志来分析安全威胁的时候, 人们很容易被淹没在大量的”噪音“数据中。 不过流量日志依然是安全分析的基本要求。 有一些好的算法和软件能够帮助人们提供分析质量。
” 蜜罐“数据
” 蜜罐“可以有效地检测针对特定网络的恶意软件。 此外, 通过”蜜罐“获得的恶意软件可以通过分析获得其特征码, 从而进一步监控网络中其他设备的感染情况。 这样的信息是非常有价值的, 尤其是很多 APT 攻击所采用的定制的 恶意代码 往往无法被常规防病毒软件所发现。 参见本站文章企业设置 ”蜜罐“的五大理由
数据质量很重要
最后, 企业要注意数据的质量。 市场上有很多数据可用, 在安全人员进行大数据安全分析时, 这些数据的质量和准确性是一个最重要的考量。 因此, 企业需要有一个内部的数据评估团队针对数据来源提出相应的问题, 如: 最近的数据是什么时候添加的 ? 有没有样本数据以供评估? 每天能够添加多少数据? 这些数据哪些是免费的? 数据总共收集了多久?
安全事件和数据泄露的新闻几乎每天都能够出现在报纸上, 即使企业已经开始采取手段防御 APT , 传统的安全防御手段对于 APT 之类的攻击显得办法不多。 而利用大数据, 企业可以采取更为主动的防御措施, 使得安全防御的深度和广度都大为加强。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21