SAS信用评分之逻辑回归的变量选择
关于woe的转化,这一部在之前的这篇文章:sas批量输出变量woe值中已经写了,woe也只是简单的公式转化而已,所以在这系列中就不细究了哈。这次的文章我想来讲逻辑回归。你会说逻辑回归就是三个方法:backword stepword forward有什么好讲的。如果你这么说,你的模型就只能停留在机器给你什么结果就是什么结果,那就low了哈。
为什么这么说呢?是因为我发现譬如你输入了300个变量,你设定了sle和sls的显著性水平都是0.05,那么只要是满足“sle和sls的显著性水平都是0.05”的变量就会被筛选出来,这时候就有问题,输入的300个变量中,至少有30个变量是满足上面的显著性水平的条件的,那么你这30个变量难道都要用的模型中吗?
你说可以,你领导都会跟你说不可以,会过拟合,过拟合意味着什么,评分卡在AB两级的客户极少(因为需要满足的条件多),在cde级的客户很多,加入以前100个人来申请,是30个人可以通过的,但是现在你做了模型100个人中只有10个人能通过,那这10个人肯定好的啊。这样子逾期率是降低了,但是批核率也降低了,通过的人少了,老板就问你,你这是让公司怎么赚钱!!!。
那么这时候我们应该做什么,就是精减变量,让只用十几个变量达到30个变量的效果,当然这种30个变量的效果可能很好,但是我们尽量是做到用十几个变量达到30个变量的效果啦。譬如,30个变量达到的ks值是0.326,那么你13个变量可以达到0.316,那也足够拉。
那么现在先贴一个单独的proc logistic 过程。
Ods Output ParameterEstimates=aa ;
proc logistic data=test.RONG_ZX_total12_3 outest=bb ;
model APPL_STATUS_1(event="0")=
woe_N_a_nine_rate
woe_N_t_CREDIT_f
woe_N_ACCOUNT_CREDITCARD
woe_N_q_othree_cnt
woe_N_q_tlttwelve_cnt
woe_N_cq_cc_rate
woe_N_OPERATOR_num_S
woe_N_CREDOO_SCORE_o
woe_N_CALL_PAY_mrate
woe_n_g_MARITAL_P
woe_n_NAME_CITY
woe_n_industry_o
woe_n_EDUCATION
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class APPL_STATUS_1;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
这是我在建模中的一个例子。后面的proc npar1way是计算ks值的。
这里是我随便选了13个变量出来,然后跑了一下ks值,但是这里有个问题就是那我怎么知道这30个变量中到底哪13个,难道我要一直试嘛,这样子很浪费我的时间也。所以我一早上就在纠结这个问题,但是我又百度不到sas中怎么实现C2013随机数的产生。所以我在纠结中就想出以下这种方法,不过要是哪位大神指导C2013 怎么实现还是希望留言区指导,我可以继续学习。
那么接下来就贴下我的代码吧,代码就是以ks为衡量指标,希望找出一种组合的ks是比较高的。
%macro var_namelist(data=,coltype=,tarvar=,dsor=);
%let lib=%upcase(%scan(&data.,1,'.'));
%let dname=%upcase(%scan(&data.,2,'.'));
%global var_list var_num;
proc sql ;
create table &dsor. as
select name
from sashelp.VCOLUMN
where left(libname)="&lib." and left(memname)="&dname." and type="&coltype." and lowcase(name)^=lowcase("&tarvar.") ;
quit;
%mend;
%macro pub_survey(data,dvar,n,start,end,by);
proc datasets lib=work;
delete result_1;
run;
%do i=&start. %to &end. %by &by.;
%var_namelist(data=&data.,coltype=num,tarvar=&dvar.,dsor=aa);
proc surveyselect data=aa
out=bb
method =srs
n=&n.
seed =&i.;
run;
data _null_;
set bb;
call symput (compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put &var1.;
Ods Output ParameterEstimates=gg ;
proc logistic data=&data. outest=bb ;
model &Dvar. (event="0")=
&var1. &var2. &var3. &var4. &var5. &var6. &var7. &var8. &var9. &var10. &var11.
&var12. &var13.
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class &Dvar.;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data result;
set ks_1(keep=ks);
length value $500.;
value=compress("&var1."||","||"&var2."||","||"&var3."||","||"&var4."||","||"&var5."||","||"&var6."||","||"&var7."||","||"&var8."||","||"&var9."||","||"&var10."||","||"&var11."||","||"&var12."||","||"&var13.");
run;
Proc append base=result_1 data=result force;run;
%end ;
proc sort data=result_1;by ks;
run;
%mend;
老样子啦,说下这宏怎么用。宏都是我调试过,应该没错,就是你的原数据集,要只留下你要用来循环的变量以及因变量,别的你都不要哈,乖,听我话。
Data:填入的是原数据集;
Dvar:填入因变量
N:填入你想最终模型的个数,建议10-15个吧。
Start:这里填的是seed种子数,次种子出不来.avi哈。建议是4位数以上,不知道sas随机过程中seed的种子数的自行百度。
End:你要种子循环的尽头。尽量设大点,我是建议循环个1000 2000次最好啦。
By:种子循环的区间,就是你是每隔200个数取一个数还是20个数之间取一个数。譬如你设定start=1000,end=1500,by=100,那就是种子等于1000,1100,1200,1300,1400,1500这五个数。再强调一次,输入数据集值保留你要这筛选的变量以及因变量,其余的主键什么的,你别加进去哈。
好的,这时候我要上结果图了:
这就是结果图。Ks升序排序,可以看到我循环了三次,最好的是第三次,帅选的13个变量里面,ks可以达到0.301,变量value中就是达到ks值的13个变量。但这只是我循环三次的结果啦。我是建议最好循环个1000次2000次。你就下班的时候放着跑,明天上班来收成果就好了,上班时间盯着屏幕。是跑不完的。数据分析师培训
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16