SAS信用评分之逻辑回归的变量选择
关于woe的转化,这一部在之前的这篇文章:sas批量输出变量woe值中已经写了,woe也只是简单的公式转化而已,所以在这系列中就不细究了哈。这次的文章我想来讲逻辑回归。你会说逻辑回归就是三个方法:backword stepword forward有什么好讲的。如果你这么说,你的模型就只能停留在机器给你什么结果就是什么结果,那就low了哈。
为什么这么说呢?是因为我发现譬如你输入了300个变量,你设定了sle和sls的显著性水平都是0.05,那么只要是满足“sle和sls的显著性水平都是0.05”的变量就会被筛选出来,这时候就有问题,输入的300个变量中,至少有30个变量是满足上面的显著性水平的条件的,那么你这30个变量难道都要用的模型中吗?
你说可以,你领导都会跟你说不可以,会过拟合,过拟合意味着什么,评分卡在AB两级的客户极少(因为需要满足的条件多),在cde级的客户很多,加入以前100个人来申请,是30个人可以通过的,但是现在你做了模型100个人中只有10个人能通过,那这10个人肯定好的啊。这样子逾期率是降低了,但是批核率也降低了,通过的人少了,老板就问你,你这是让公司怎么赚钱!!!。
那么这时候我们应该做什么,就是精减变量,让只用十几个变量达到30个变量的效果,当然这种30个变量的效果可能很好,但是我们尽量是做到用十几个变量达到30个变量的效果啦。譬如,30个变量达到的ks值是0.326,那么你13个变量可以达到0.316,那也足够拉。
那么现在先贴一个单独的proc logistic 过程。
Ods Output ParameterEstimates=aa ;
proc logistic data=test.RONG_ZX_total12_3 outest=bb ;
model APPL_STATUS_1(event="0")=
woe_N_a_nine_rate
woe_N_t_CREDIT_f
woe_N_ACCOUNT_CREDITCARD
woe_N_q_othree_cnt
woe_N_q_tlttwelve_cnt
woe_N_cq_cc_rate
woe_N_OPERATOR_num_S
woe_N_CREDOO_SCORE_o
woe_N_CALL_PAY_mrate
woe_n_g_MARITAL_P
woe_n_NAME_CITY
woe_n_industry_o
woe_n_EDUCATION
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class APPL_STATUS_1;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
这是我在建模中的一个例子。后面的proc npar1way是计算ks值的。
这里是我随便选了13个变量出来,然后跑了一下ks值,但是这里有个问题就是那我怎么知道这30个变量中到底哪13个,难道我要一直试嘛,这样子很浪费我的时间也。所以我一早上就在纠结这个问题,但是我又百度不到sas中怎么实现C2013随机数的产生。所以我在纠结中就想出以下这种方法,不过要是哪位大神指导C2013 怎么实现还是希望留言区指导,我可以继续学习。
那么接下来就贴下我的代码吧,代码就是以ks为衡量指标,希望找出一种组合的ks是比较高的。
%macro var_namelist(data=,coltype=,tarvar=,dsor=);
%let lib=%upcase(%scan(&data.,1,'.'));
%let dname=%upcase(%scan(&data.,2,'.'));
%global var_list var_num;
proc sql ;
create table &dsor. as
select name
from sashelp.VCOLUMN
where left(libname)="&lib." and left(memname)="&dname." and type="&coltype." and lowcase(name)^=lowcase("&tarvar.") ;
quit;
%mend;
%macro pub_survey(data,dvar,n,start,end,by);
proc datasets lib=work;
delete result_1;
run;
%do i=&start. %to &end. %by &by.;
%var_namelist(data=&data.,coltype=num,tarvar=&dvar.,dsor=aa);
proc surveyselect data=aa
out=bb
method =srs
n=&n.
seed =&i.;
run;
data _null_;
set bb;
call symput (compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put &var1.;
Ods Output ParameterEstimates=gg ;
proc logistic data=&data. outest=bb ;
model &Dvar. (event="0")=
&var1. &var2. &var3. &var4. &var5. &var6. &var7. &var8. &var9. &var10. &var11.
&var12. &var13.
/selection=s sle=0.05 sls=0.05;
output out=pp
p=pred_status lower=pi_l upper=pi_u;
run;
proc npar1way data=pp noprint;
class &Dvar.;
var pred_status;
output out=ks_1(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data result;
set ks_1(keep=ks);
length value $500.;
value=compress("&var1."||","||"&var2."||","||"&var3."||","||"&var4."||","||"&var5."||","||"&var6."||","||"&var7."||","||"&var8."||","||"&var9."||","||"&var10."||","||"&var11."||","||"&var12."||","||"&var13.");
run;
Proc append base=result_1 data=result force;run;
%end ;
proc sort data=result_1;by ks;
run;
%mend;
老样子啦,说下这宏怎么用。宏都是我调试过,应该没错,就是你的原数据集,要只留下你要用来循环的变量以及因变量,别的你都不要哈,乖,听我话。
Data:填入的是原数据集;
Dvar:填入因变量
N:填入你想最终模型的个数,建议10-15个吧。
Start:这里填的是seed种子数,次种子出不来.avi哈。建议是4位数以上,不知道sas随机过程中seed的种子数的自行百度。
End:你要种子循环的尽头。尽量设大点,我是建议循环个1000 2000次最好啦。
By:种子循环的区间,就是你是每隔200个数取一个数还是20个数之间取一个数。譬如你设定start=1000,end=1500,by=100,那就是种子等于1000,1100,1200,1300,1400,1500这五个数。再强调一次,输入数据集值保留你要这筛选的变量以及因变量,其余的主键什么的,你别加进去哈。
好的,这时候我要上结果图了:
这就是结果图。Ks升序排序,可以看到我循环了三次,最好的是第三次,帅选的13个变量里面,ks可以达到0.301,变量value中就是达到ks值的13个变量。但这只是我循环三次的结果啦。我是建议最好循环个1000次2000次。你就下班的时候放着跑,明天上班来收成果就好了,上班时间盯着屏幕。是跑不完的。数据分析师培训
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14