构建大数据健康发展的安全生态环境
大数据等颠覆性技术快速发展的同时,大数据安全面临的挑战也日益尖锐。5月26日至28日在贵州贵阳举办的2017中国国际大数据产业博览会上,大数据安全成为业界热议的焦点话题。专家认为,大数据产业的发展与创新必须直面数据安全的严峻挑战,急需打造和构建一个促进大数据健康发展的安全生态环境。
辨识、管控大数据风险成为国家安全“晴雨表”
在数字经济时代,无论从事哪行哪业,都需要通过对数据资源的收集、整理、挖掘来提升效率。大数据将成为未来最有价值的资源。“数据是数字经济时代最重要的生产资料,也是继土地、能源之后最重要的生产资料。”浪潮集团董事长兼CEO孙丕恕说。
为保障大数据安全,中央网信办近年来开展了一系列切实有效的指挥协调与落地部署工作。在顶层设计方面,中央网信办协同相关单位,在网络安全、信息化发展和大数据应用等方面,共同促进国家相关法律法规的增补完善和相应国家战略政策的落地出台;在安全审查方面,进一步防范信息安全产品与技术应用领域的潜在隐患和安全风险,为国家信息主权和数据主权的保护提供切实支撑。
“短短几年里,大数据战略已经从全面总体布局,向各大行业、细分领域扩展延伸。一系列战略规划的大布局体现了大数据发展驱动效应日趋凸现。”在2017中国国际大数据产业博览会期间举办的大数据安全高层论坛上,中国信息安全测评中心专家委员会副主任黄殿中表示,辨识和管控大数据风险成为监控国家安全能力的试金石,也是体现国家安全的“晴雨表”。
“我国大数据发展已进入关键时期,大数据深刻改变了人们的思维方式、生产方式和生活方式。”中国信息安全测评中心主任朱胜涛也认为,大数据时代的安全威胁成为全人类面临的共同问题,任何国家都难以独善其身,也无法置身事外。
大数据风险隐患多
通付盾科技有限公司总裁王梅坦言,2016年共有超过十亿数据被窃取,其中95%属于科技、金融等行业;数据欺诈行为也凸显非接触性和隐蔽性,欺诈方式更加智能化、专业化,诈骗手段不断翻新,尤其金融欺诈越来越呈集团化、职业化态势。
中国工程院院士倪光南表示,过去传统的安全在保密性、完整性和可用性方面,基本都是技术因素,也有一套比较完整的测评体系,但对于网络安全、大数据安全显然不够。“网络安全很重要的一点是强调可控性。”倪光南说。
“网络安全威胁无处不在。漏洞是绝对存在的,没有攻不破的网络。”奇虎360公司副总裁石晓虹表示,除了基础设施安全,还包括系统漏洞和后门、外部攻击和窃密、数据资产泄露、内部非授权访问、违规交易等。此外,风险还存在于大数据的采集、传输、存储、应用等整个生命周期中。
“与保护静态文件或数据库等传统安全相比,‘大数据环境下的数据安全’具有特殊性。”阿里巴巴技术副总裁、首席安全专家杜跃进也认为,在万物互联的环境下,用户几乎每时每刻都在产生数据,用户隐私、自身权益和安全如何保障成为面临的新问题。此外,大量网站或应用的安全防护水平不高,导致不法分子可以从中大量窃取数据,令人防不胜防。
期待建立统一数据平台和共享机制
“赢安全者赢未来。”在黄殿中看来,大数据安全成为推进全国安全建设的压舱石,而大数据的开放是双刃剑,只有做好准备才能不伤及自身,“对于涉及国家机密确又有利于大数据发展的,应该有利引导;对涉及大是大非问题的,必须坚守底线”。
黄殿中认为,在强化大数据安全治理问题上,要综合运用政策法规、技术保障、人才培养和市场引领等施策手段,充分调动和发挥国家、企业和个人的优势力量,切实加强大数据发展的安全治理与综合施策。
“构筑安全管理体系,才能应对各种漏洞,让攻击者进不去,进去了也拿不到东西,即便拿到了也看不懂、改不了……”中国工程院院士沈昌祥提到,要开启网络安全主动防御时代,唯有主动免疫的可信计算才能解决大数据安全问题。
数据作为一项重要资产,也是下一代“石油”。中石化集团信息管理部主任李德芳常常这样比喻。他认为,从应用层面看,应该通过利用大数据构建应用体系来打造产业竞争新优势。“要建立统一的数据平台,实现数据资产的统筹管理和高效管控;做到管理和技术并重,做好态势感知,实现协同共享,构建一个相对全面、安全、牢固的保障系统。”李德芳说。
“期待数据可以安全地流动、共享。”天空卫士CEO刘霖也表示,安全厂商不能故步自封,应打破壁垒,加强合作,形成数据共享模式,“不要把保障数据安全当成一种可有可无、锦上添花的技术,而是要根据业务需求与企业的管理真正整合起来。”
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21