业务实践,数据分析应从细节入手_数据分析师
John Lucker是德勤咨询公司顾问,他20多年来都没有申请过一张新的信用卡。但是在过去的三年里,他却收到了超过300份来自银行,连锁酒店,各种无奇不有的团体的邀请。这是一个或被称为广撒网式营销的战术,他认为这也是“非常古老的战术 ”。
如果公司对他广撒网时候分析了他过去和现在的行为,比如他多长时间申请一次信用卡或者他与他们的各项业务有怎样的交集,那他们应该能够预料到他的反应然后把他们的祈祷留给下一个更可能的客户。 Lucker的个人经历使他确信,像这样的基本做法还需完善。 首席信息官们,是时候帮助你的营销部门来进行更好的分析了。
但是,通过使用预测分析法来实现更好的分析可不是个普通的任务, Lucker说。它需要先进的工具和技术,以及数据科学家的特质-革新和创造力。他们共同指引企业去回答“细碎”的问题 – 这是他给“关于你可能面临的最棘手业务问题的实际并且具体的问题”设定的标签。
细碎问题与战略目标相一致,与关键绩效指标(KPIs )相关 ,被设定为可操作性与信息性并重,有先见之明,而不是做事后诸葛亮。举个例子? Lucker建议道:
你的司的网络口碑怎么样,这将怎样影响未来的销售或产品?
你即将失去的1000个客户是谁,为什么?
影响客户忠诚度最强烈的因素是什么,为什么?你能做些什么来提高忠诚度?
你能否列出一个不好的客户体验带来的恶果而你又可以做些什么呢?
虽然列出问题清单只是个起点。“你应该将它们归类到相应的分组,整理观点和并使之聚焦在你的整体企业和客户策略,以及所期待的关键绩效指标上。”他说。
可视化可以帮助人们掌握复杂的数据,但构建有易于消化这一特性的可视化可能会非常棘手。在The Data Warehousing Institute的网络研讨会上,独立分析公司WiseAnalytics的总裁和创始人Lyndsay Wise概括出了能有所帮助的五条最佳操作。
1、简化表示层。 “给一个人过量的信息并不能使它变得更容易被接收。”Wise说。“自定义可视化建立在受众基础上。例如,数据科学家相对一般用户,有能力,而且而很有可能已经访问了不同类型的数据。此外,要让指标和任何动作项能够被很容易的找到。
2、为每一台设备进行设计。移动设备必须被分解为自助式商业智能(BI )应用和可视化两部分,Wise说。对于IT部门来说,这意味着要追随客户。 “商务解决方案[应该]反映外部和工作之余使用的技术类型。”她说。
3、突出显示重要数据。弄清楚为什么需要对数据进行可视化,这可以用以帮助确定如何去表现它。揭示随时间而动之变化的数据点,对画面而言重中之重,它可以帮助用户识别趋势和机会。
4、专注于一贯的设计。 “设定一个内部设计风格,以反映组织的品牌形象和你希望通过分析实现的东西。 ”Wise说。它对可能从一个可视化跳转到另一个的用户更为容易,但它也更容易按照需求维护和向外扩展。另外,你可以一次培训整个组织,她说。
5、不要忘了治理。数据可视化可以帮助打开整个企业的数据。将隐私和安全功能融入到设计中是至关重要的,并且需要提前规划。“这些数据因素非常重要,它可能影响定价,开发成本以及数据如何在部门间被使用。”Wise说。
数据分析咨询请扫描二维码
数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21