关于卖家数据分析的10个问题_数据分析师
支付宝数据首席分析师,你怎么看待“数据挖掘”这个词? 所谓的“数据挖掘”是基于用户的行为挖掘出有价值的东西,以及这个东西被用到商业环境上。比如非常著名的“啤酒与尿布”的案例,它的背景是在1 ...
1,作为支付宝数据首席分析师,你怎么看待“数据挖掘”这个词?
所谓的“数据挖掘”是基于用户的行为挖掘出有价值的东西,以及这个东西被用到商业环境上。比如非常著名的“啤酒与尿布”的案例,它的背景是在1992年的美国,每周四或者每周五下午5点-7点的时间形成的连锁销售。但是这个联合销售的方法并不适合任何时间和任何场合,单纯地剥离其背景本身,谈数据挖掘就是一个很泛的事情。
2,你认为,支付宝的数据和淘宝的数据有什么不一样?
我不在淘宝工作,所以很难全面地去了解淘宝内的数据。简单来说,支付宝的数据很广,它是以结果为导向的,显示的是买家交易最后一步动作,而淘宝探讨的是影响其购买的多项数据,是过程数据,它的数据更深,更细分。
3,作为产品出身的数据分析师,按道理你应该对影响消费者购买以及过程数据更感兴趣,为什么会选择支付宝这种以结果为导向的交易数据分析呢?
支付宝也有其特殊的优势。从我个人而言,选择一个公司做数据分析有几个理由,第一,公司高层对数据的理解和重视程度;第二,公司的数据量足够大,足够丰富,能和你本身的研究方向相契合;第三,公司文化与就是个人性格的匹配,这三点支付宝都符合。
4,你个人认为数据能帮助卖家解决什么问题?
其实数据的核心就是将复杂问题简单化。今天的数据是否成功主要看两方面:第一是从时间(Righttime)上,数据出现的时间能否在你最需要它的时候出现;第二,从技术层面讲,有关数据的技术门槛能不能再降低。如果你能让你的用户用2秒时间,只要按一个箭头就可看到他想看的数据,那么这些数据就更有价值的。
5,作为产品出身的人,你看数据的角度会和单纯的数据分析师有什么不一样么?
从我本身而言,我认为不懂商业的人别谈数据。因为做任何数据都应该从问题出发。比如,你在用数据解决问题之前,首先要问自己几个问题:what is the problem(是什么问题?);who(用户是谁);why me(为什么是我做?);why now(为什么是现在做?);What scale(用户层大么?)。这几个问题,如果都是YES,那么这个产品就一定值得做。
6,如果你是支付宝的CEO,你最关心支付宝的哪些数据?
这就要看你所指的时间性了,比如周度,月度,甚至年度是不一样的。如果你的问题是指周度(week)敏感的话而我的时间只有十分钟的话我的答案会是:第一,新/老用户支付成功率;第二,新增用户数的周环比及最近峰比较;第三,十大业务量最高的支付场景中那一个超出了我的预期。第四,商户及用户上周投诉的分类排行榜。
7,现在很多卖家开口闭口就会必谈pv.uv和转化率,你认为这是卖家最应该关心的数据吗?
我不是卖家,但是这个问题的答案是:显然不是。数据是需要背景的,并不是任何类目,任何级别的卖家他关心的都应该是所谓的流量和转化率等。比如京东前一段时间最关注的是物流是否给力,因此京东的CEO最想要看的就是送达率的情况,而如果老板关注的是新品成功率,又或者是追单率等数据,这些数据都不是空想,而是经过沉淀和契合卖家自身发展背景的。因此,肯定不是所有的卖家在任何阶段关心的数据都是一样。
8,你觉得作为淘宝卖家,应该如何使用数据?
卖家更应该学会关注搜索数据(Buyer demanddata),而不是交易数据,比如作为一个女装卖家,你输入“新款”,会发现,其实早在3月11日,就应该是春装打折的时候,如果你对搜索数据敏感,就更容易发现商机,而不是只盯着所谓的交易数据不放。要注意的是其实百分之九十影响你的数据不一定在站内。
9,如果你是淘宝卖家,你会关注哪些数据?
如果我是卖家,我关心的数据有两个纬度:第一,新用户从那个渠道找到我,看了什么? 买了什么。;第二,存量用户中的留存情况。
10,你觉得,一个公司或者一个卖家,如何合理利用数据来制定KPI呢?
很多公司的KPI大多是以业务目标为导向,很少以用户为导向。其实更好的KPI导向应该是以用户为核心。我们常说用户很重要,但是用户到底有多重要,那些用户对你更重要,可以量化吗?。其实要知道用户对你的感知只要问一个问题就可以,用户失去你,他会不会不爽?比如失去了QQ密码,用户会慌,没有了支付宝,对用户影响大么?从这个角度去分析,自然能找到答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07