我们的时代是数据日益渗透生活的时代,大数据与人们的生产生活有着越来越密切的关系。近期来,不少读者向本报反映,希望了解关于大数据的许多问题,我们从中梳理了六个问题,组织专业记者,深入采访业内专家,努力探寻答案,以满足广大读者的探问。
刚刚闭幕的2017中国国际大数据产业博览会又为火热的大数据产业添了一把火,博览会签约金额达167亿余元,签约意向金额为256亿元左右。这一全球首个以大数据为主题的展会,再一次撩起了大数据的神秘面纱,展示了大数据的大能量,一个通过加工处理数据来创造价值的产业正在迅猛发展。
什么是大数据 有一个故事,说的是一位顾客订购披萨时,披萨店可以立即调出这位顾客的许多信息,比如送披萨上门必有的家庭、单位等地址和电话,顾客的消费习惯从而推荐适合他的披萨种类,顾客名下的银行卡透支情况从而确定他的支付方式,甚至顾客要自取披萨时,还能根据顾客名下车辆的停放位置预估他的到店时间等等。
从这个故事,我们可以看出大数据的一些关键特征,比如容量大、类型多、关联性强、有价值等等。“大数据是以高容量、多样性、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”工信部信息化和软件服务业司副司长李冠宇接受经济日报·中国经济网记者采访时说。
仅仅规模大不是大数据
大数据,顾名思义,“大”该是应有之义。“大数据的定义最初与容量有关系。”李冠宇分析说,业界有几种对大数据的定义,其中一个共同点就是数据的容量超出了原有的存储、管理和处理能力。
正如中国电子信息产业发展研究院副院长樊会文接受记者采访时指出的,大数据概念产生就是因为数据量和数据类型急剧增加,以至于原有的数据存储、传输、处理以及管理技术不能胜任,需要全新的技术工具和手段。
信息技术日新月异,大数据的定义也在发生变化。工信部赛迪研究院软件所所长潘文说,数据即时处理的速度(Velocity)、数据格式的多样化(Variety)与数据量的规模(Volume)被称为大数据“3V”。但随着近几年数据的复杂程度越来越高,“3V”已不足以定义新时代的大数据,准确性(Veracity)、可视性(Visualization)、合法性(Validity)等特性又被加入大数据的新解,从“3V”变成了“6V”。
对于“多大容量的数据才算大数据”,潘文说,大数据的规模并没有具体的标准,仅仅规模大也不能算作大数据。规模大本身也要从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
李冠宇说,比如一份现在看起来很小的数据,但是纵向积累久了也可以变成大数据,横向与其他数据关联起来也可能形成大数据。而一份很大的数据如果没有关联性、没有价值也不是大数据。
运满满研究院院长徐强认为,“大”是必要条件,但非充分条件。基于移动互联网用户规模红利,国内平台型企业比较容易获取大量数据,但数据不是越多越好,无用数据就像噪音,会给数据分析、清洗、脱敏和可视化带来负担。
这也正如阿里巴巴集团董事局主席马云在某次演讲中说的:“很多人以为大数据就是数据量很大,其实大数据的大是大计算的大,大计算+数据,称之为大数据。”
“水涨船高”的大数据
今年麦收时节,在雷沃重工的全国“三夏”跨区作业信息服务中心,显示屏的全国电子地图上有许多大小不一、颜色不同的圆圈,这是每个区域正在作业的收割机。智能化的收割机会自动获得许多数据,包括机器运行情况、收割量、小麦含水量等,数据传回后台汇总后,总体收割情况一目了然。
“大数据概念正是来自信息技术的飞速发展和应用,特别是随着云计算、物联网、移动互联网的应用,数据量迅猛增长。数据来源有两种,一种与人有关,比如政府、企业等为人们服务时产生的数据;另一种与物有关,在移动泛在、万物互联时代,物联网应用的浪潮将带动数据量爆发式增长。”李冠宇说。
这也就不难理解,为何当下数据产生的速度如此之快。正如樊会文所分析的,一方面,信息终端大面积普及,信息源大量增加;另一方面,基于云计算的互联网信息平台快速增长,数据向平台大规模集中。
大数据与云计算、物联网、人工智能等新一代信息技术之间相互影响、相互促进、相互融合。徐强说,运满满通过车联网设备和信息平台,每天获取3TB至4TB的数据,运用先进的大数据算法模型,实现了智能车货匹配、智能实时调度等。
樊会文认为,云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。简单来说,云计算是大数据的基础,有了云计算才能大量集中数据从而产生大数据。同时,大数据也支撑了云计算应用创新,带动云计算发展。
人工智能的核心在于大数据支撑。围棋人工智能程序“阿尔法狗”打败柯洁,离不开大数据的支持。“大数据技术能够通过数据采集、分析等方式,从海量数据中快速获得有价值的信息,为深度学习等人工智能算法提供坚实的素材基础。反过来,人工智能技术也促进了大数据技术的进步。两者相辅相成,任何一方技术的突破都会促进另外一方的发展。”潘文说。
核心价值在于应用
刚刚过去的“6·18”再次掀起网购热潮。网购消费者基本都被精准推送过广告信息,如曾浏览过电饭煲的消费者,很长一段时间内会在登录页面后看到各品牌电饭煲信息。
阿里、京东、360等互联网平台接触消费者众多,也因此获得了很多数据。但是正如精准推送一样,不对这些数据进行处理、挖掘就没法产生价值。比如雷沃收割机传回的数据进行汇总后还要分析处理,从而得出对收割作业乃至整个农业都有意义的结论才是这些数据的价值所在。
“大数据作为重要的基础性战略资源,核心价值在于应用,在于其赋值和赋能作用,在于对大量数据的分析和挖掘后所带来的决策支撑,能够为我们的生产生活、经营管理、社会治理、民生服务等各方面带来高效、便捷、精准的服务。”李冠宇强调。
我们正在步入万物互联时代。华为预测,到2025年,物联网设备的数量将接近1000亿个。工信部统计数据显示,目前我国网民数量超过7亿,移动电话用户规模已经突破13亿,均居世界第一。
“全球数据总量呈现指数级增长,企业级用户拥有的数据量在快速增加。互联网的社会化生产出巨量数据。”樊会文说。
大数据产业也因此有了稳步增长的基础。据潘文介绍,2016年我国大数据核心产业规模达到3100亿元,按照工信部今年年初发布的《大数据产业发展规划(2016—2020年)》,预计到2020年将达到1万亿元的规模。
“2016年,我国两批次8个国家级大数据综合试验区开始建设,大数据集聚发展布局初步形成,各区域特色化发展态势初现。以阿里巴巴为代表的大数据企业不断创新,开源技术成为大数据技术创新和产业进步的重要力量。大数据在金融、电信、交通等行业领域不断深化应用,催生着新业态,加速着产业升级。”潘文说。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21