大数据时代,教你怎么用大数据里赚钱!
在大数据时代想赚钱必须会运用大数据,掌握了大数据技术就可以赚到大钱。
当数字营销技术已经普遍得到认同,并且在过去一些年当中日渐成熟,收集和利用数据的迫切希望也开始加快了步伐。
在交际圈和客户体验领域,“数据”已经成为一切跟数字有关的事物的相联系的统称。包括联系方式、交易记录、行为信息,甚至是录像、影像之类的内容。这种现象已经不可避免地导致了对数字价值的滥用和投机。
我们认为数据的价值不在于它的搜集和储存,而应该源于数据分析的过程、基于数据创造深刻的见解,和在这些见解基础上的采取行动。这种价值在当品牌通过改进的商品和服务可以为数据的创造者——顾客提供更好的体验时才会显现。
一般来说,有三个模型可以帮助营销者学会更好地利用数据,更好地优化营销预算,以及驱动市场导向创新。
1.利用模型识别算法改善市场细分
2.通过倾向分析做出精确的预测
3.对顾客信息进行过滤以提出更好的推荐建议
细分模型当算法是用来分析顾客数据集的时候,受众市场细分就变得更加复杂精细。人类只能处理不多的一些的跟消费者细分相关的变量,而计算机软件就不受这个限制。这对于要计算特定顾客群的真正价值来说非常重要。此外,营销者可以很快速地摆脱传统的市场细分模型,这种传统模型通常建立在小范围的基础人口数据点上。它们包括产品细分(人们买或者不买的产品种类、群体)、品牌细分(人们喜欢或不喜欢品牌种类、群体)、行为细分(人们购买频率、在购买点停留时间、与客服接触频率以及降价打折对他们的影响)。
倾向模型
倾向模型可以让你预测单个顾客或细分顾客群在未来的行为表现。假设你掌握了正确的数据,你就有可能用相应算法将某一个消费者与其他消费者进行比较,从而预测出这个消费者将会花费他们生命当中多少的时间来与你的产品共同度过。举个例子,一个很高数额的一次性购买所带来的价值就不如一个数额低但是持续性地购买带来的价值高。在这种情况下,专注于研究后者市场就显得意义非凡。预测客户的参与倾向也是可以的,只要弄清楚某一个特定客户点击你的内容营销或的可能性有多少,或者邮件沟通能够产生多大的效率提高作用。另一个有价值的倾向模型就是可以测量购买的倾向。它会告诉你消费者是不是准备要开始购买行动,它可以帮助你用合适的报价触达目标消费者。这种模型也可以使那些不准备购买的客户呼之欲出,以便于品牌可以用更有竞争力的报价去触及他们。
推荐模型
亚马逊有一个自动推荐的程序,最为著名的就是“买了这个产品的人也购买了......”。运用推荐算法,商家不再局限于向上销售,而是能够提供数据服务以便真正帮助消费者找到他们想要的产品和服务。交叉销售推荐对消费者来说是一个非常有用的功能。不仅仅是推荐同一种产品的其他版本,而是建议消费者购买其他类型的产品,从而达到捆绑销售的目的。这一功能在服装上作用得很好,但同时在其他产业如娱乐产品也可以发挥作用。比如提前购买电影票附带点心,享受快递服务,就是一个很好的例子。“下一步销售”推荐使用的数据支持更加广泛,它是用来向消费者建议她想购买的下一件物品,这个在价值附加服务领域表现尤其突出。比如,如果一家自行车厂商知道某一顾客刚刚更新了他的自行车,他就可以提供一套工具或者配件帮助消费者从购买中得到更多价值。运用以上三种模型,企业可以通过数据挖掘所收集的数据资料的真正价值。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21