大数据分析助医院实现智能化人员配置
在这个信息化时代,我们的工作、生活方式乃至生存方式,都因为信息技术的不断应用和发展发生着深刻变革。人口和消费水平的增长都增加了对医疗机构服务消费的需求,随着老龄化的压力和慢性疾病的增加,迫使医疗机构不得不从利益层面上做出艰难抉择。
为减少重复性测试,医疗健康领域已经开始采用信息技术对看护计划和医疗助理进行优化。但在病人护理服务方面,信息技术仍然无法取代人力,就医院本身而言,近70% 的预算用于劳动力成本。护士、治疗专家和内科医生仍然不可或缺。
人力配置不当导致医疗失误
谈到劳动力成本,就不得不直面由于医疗行业逐步向商业化转型进一步增加的成本压力。我国医疗机构正在进行全面的医疗改革,持续的转型和经济压力在无形中增加了医疗机构运营过程中的成本变数。医疗机构最先想到的解决方案就是削减护士的人数,以此来降低成本压力。但如果对护士数量进行不当地削减,又会造成医疗事故、病人护理质量降低及其余护士工作超负荷等诸多问题,医疗机构甚至还需要面对由此衍生而出的,诸如员工因工作负担过重以致人员流失以及医疗诉讼等更为严峻的问题。
为解决这一问题,有些组织把护士与病人的比率作为进行人员配置的依据。早在一个世纪之前,美国要求医院接受医疗保险基金,确保 “ 有充足数量的认证注册护士、执业护士和其他人员,为需要护理的所有病人提供服务。 ” 目前加州和麻省制定了相关法律,对护士与病人的最小比率进行了规定。 2004 年,加州制定的手术室比率为1:1 ,病房比率为 1:6 。相关法律中还要求 “ 医院需保持病人敏度分级系统,必要时用来指导其他员工,将某些护理工作指定给具有注册护士执照的护士。在给护士分配护理工作之前衡量他们的工作能力并提供适当的职位, 同时将人员编制记录在案。 ”
2014 年,麻省也制定了护士与病人之间的最小比率,但该比率只适用于重症看护。另外其他 7 个州要求医院设立员工委员会对计划和员工政策负责(CT, IL, NV, OH, OR, TCX, WA) ,还有 5 个州要求有一定形式的公开和(或)公共报告功能 (IL, NJ, NY, RI, VT) 。 2015 年 4 月 29 日,众议员 Lois Capps (D-CA) 和David Joyce (R-OH) ,以及参议员 Jeff Merkley (D-OR) 引入了注册护士安全员工行动,要求加入的医疗机构需建立一个委员会,保证机构组成中至少有 55% 以上为一线护理护士,并为每个科室建立护士员工计划。
同时,相关医疗健康研究和治疗机构撰写了政策创新文件,通过对医疗文献进行评估,指出因护士与病人比率过低所造成的问题。大量研究证明,低比率对病人安全和病人恢复结果造成的诸多负面影响中,包括病人提前死亡和并发症等严重问题。
让我们回来看看全球和我国的对比情况。 根据卫生部现有标准,我国医院普通病房实际护床比不低于 0.4:1 ,每名护士平均负责的患者不超过8名。但目前临床一线的护士严重短缺,很多医院根本达不到这一标准。护士 长期处于工作超负荷、环境脏乱等恶劣状态下,人员流失严重,而这与我国日益增长的需护理群体形成严重矛盾。
信息技术能否药到病除?
综上所述,绝大多数机构会根据病人数量设置护士的编制。尽管前文中所提到的立法提供了一些设立编制的指导意见,但该比率并没有切实考虑到病人的需求。基于病人的数量进行人员编制的方式过于直接,且没有将病人的护理需求与病人诊断的相关敏感度结合在一起,更不能进一步挖掘出相关数据中有价值的指导信息。
此外,来自 HITECH (经济和临床医疗卫生信息技术)法案驱动的电子病历提供的病人数据,为病人的护理需求及所需要的员工技术进行了精确的评估。电子病历也同样应用于病人敏感评估,该评估数据也为病人及其护理需求提供了可靠而准确的评估,从而让医疗机构实现了更为精确的临床人员配置。
虽然,信息技术永远无法取代病人护理人员,但它为我们提供了一种更加智能化的方式,让这些员工可以以最有效的方式来帮助他们的病人。其他行业也可能会因为削减员工的数量导致给其消费者带来了负面的体验。但对于医疗机构行业来说,问题的严重性远远不是负面体验这么简单,因为,病人的健康和生命依赖于他们。因此,医疗行业机构只能持续地为病人提供更好的服务,别无他选。
正是因为要为病人提供更好的服务,所以医疗机构必须要保证护士免于超负荷工作以此避免不必要的医疗失误,真正实现为病人提供安全的环境。新的数字医疗信息技术,如电子病历、互联网医疗、远程医疗以及大数据分析的使用,正在改变医生、患者以及其他医疗行业相关人士之间的互动方式。依赖于最新的信息技术工具,医疗机构可以获得一种既可以满足病人需求,同时又能保护护理人员投资,更能有效地管理护理成本的好方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17