大数据分析助医院实现智能化人员配置
在这个信息化时代,我们的工作、生活方式乃至生存方式,都因为信息技术的不断应用和发展发生着深刻变革。人口和消费水平的增长都增加了对医疗机构服务消费的需求,随着老龄化的压力和慢性疾病的增加,迫使医疗机构不得不从利益层面上做出艰难抉择。
为减少重复性测试,医疗健康领域已经开始采用信息技术对看护计划和医疗助理进行优化。但在病人护理服务方面,信息技术仍然无法取代人力,就医院本身而言,近70% 的预算用于劳动力成本。护士、治疗专家和内科医生仍然不可或缺。
人力配置不当导致医疗失误
谈到劳动力成本,就不得不直面由于医疗行业逐步向商业化转型进一步增加的成本压力。我国医疗机构正在进行全面的医疗改革,持续的转型和经济压力在无形中增加了医疗机构运营过程中的成本变数。医疗机构最先想到的解决方案就是削减护士的人数,以此来降低成本压力。但如果对护士数量进行不当地削减,又会造成医疗事故、病人护理质量降低及其余护士工作超负荷等诸多问题,医疗机构甚至还需要面对由此衍生而出的,诸如员工因工作负担过重以致人员流失以及医疗诉讼等更为严峻的问题。
为解决这一问题,有些组织把护士与病人的比率作为进行人员配置的依据。早在一个世纪之前,美国要求医院接受医疗保险基金,确保 “ 有充足数量的认证注册护士、执业护士和其他人员,为需要护理的所有病人提供服务。 ” 目前加州和麻省制定了相关法律,对护士与病人的最小比率进行了规定。 2004 年,加州制定的手术室比率为1:1 ,病房比率为 1:6 。相关法律中还要求 “ 医院需保持病人敏度分级系统,必要时用来指导其他员工,将某些护理工作指定给具有注册护士执照的护士。在给护士分配护理工作之前衡量他们的工作能力并提供适当的职位, 同时将人员编制记录在案。 ”
2014 年,麻省也制定了护士与病人之间的最小比率,但该比率只适用于重症看护。另外其他 7 个州要求医院设立员工委员会对计划和员工政策负责(CT, IL, NV, OH, OR, TCX, WA) ,还有 5 个州要求有一定形式的公开和(或)公共报告功能 (IL, NJ, NY, RI, VT) 。 2015 年 4 月 29 日,众议员 Lois Capps (D-CA) 和David Joyce (R-OH) ,以及参议员 Jeff Merkley (D-OR) 引入了注册护士安全员工行动,要求加入的医疗机构需建立一个委员会,保证机构组成中至少有 55% 以上为一线护理护士,并为每个科室建立护士员工计划。
同时,相关医疗健康研究和治疗机构撰写了政策创新文件,通过对医疗文献进行评估,指出因护士与病人比率过低所造成的问题。大量研究证明,低比率对病人安全和病人恢复结果造成的诸多负面影响中,包括病人提前死亡和并发症等严重问题。
让我们回来看看全球和我国的对比情况。 根据卫生部现有标准,我国医院普通病房实际护床比不低于 0.4:1 ,每名护士平均负责的患者不超过8名。但目前临床一线的护士严重短缺,很多医院根本达不到这一标准。护士 长期处于工作超负荷、环境脏乱等恶劣状态下,人员流失严重,而这与我国日益增长的需护理群体形成严重矛盾。
信息技术能否药到病除?
综上所述,绝大多数机构会根据病人数量设置护士的编制。尽管前文中所提到的立法提供了一些设立编制的指导意见,但该比率并没有切实考虑到病人的需求。基于病人的数量进行人员编制的方式过于直接,且没有将病人的护理需求与病人诊断的相关敏感度结合在一起,更不能进一步挖掘出相关数据中有价值的指导信息。
此外,来自 HITECH (经济和临床医疗卫生信息技术)法案驱动的电子病历提供的病人数据,为病人的护理需求及所需要的员工技术进行了精确的评估。电子病历也同样应用于病人敏感评估,该评估数据也为病人及其护理需求提供了可靠而准确的评估,从而让医疗机构实现了更为精确的临床人员配置。
虽然,信息技术永远无法取代病人护理人员,但它为我们提供了一种更加智能化的方式,让这些员工可以以最有效的方式来帮助他们的病人。其他行业也可能会因为削减员工的数量导致给其消费者带来了负面的体验。但对于医疗机构行业来说,问题的严重性远远不是负面体验这么简单,因为,病人的健康和生命依赖于他们。因此,医疗行业机构只能持续地为病人提供更好的服务,别无他选。
正是因为要为病人提供更好的服务,所以医疗机构必须要保证护士免于超负荷工作以此避免不必要的医疗失误,真正实现为病人提供安全的环境。新的数字医疗信息技术,如电子病历、互联网医疗、远程医疗以及大数据分析的使用,正在改变医生、患者以及其他医疗行业相关人士之间的互动方式。依赖于最新的信息技术工具,医疗机构可以获得一种既可以满足病人需求,同时又能保护护理人员投资,更能有效地管理护理成本的好方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07