科技大数据,哲学新思维
大数据,通常用来形容人们创造的大量结构化和非结构化数据,其特点是4“V”,即,数据体量巨大;类型繁多,如网络日志、视频、图片、地理位置信息等等;处理速度快;蕴含着巨大的价值潜力。这种变化不只是科学上的,“大数据浪潮”还引发了思维模式和发展模式的改变——这让哲学家们认识到:必须认识其数理哲学基础。
对数据的认识史就是人类的发展史
人类的生存、发展方式可以归结为:获取信息,处理信息,而这就是智力。智力的进步,归根结底就是信息技术的进步。
人类历史上经历过三次信息革命:语言的创造——文字的创造——电信通讯的创造。
语言让人认识世界,建立相互关系;但其限制和缺点是无法突破个体的时空界限。文字的出现实现了人类思想的远距离和世代相袭传递,人类联合因此扩大;它虽然突破了空间上的限制,但需要耗费太长的时间。电信通讯的创造突破了空间的限制,为电子计算机与互联网创造奠定了基础。
电子计算机与互联网的创造,是一次伟大而空前的大综合,其特点是:所有信息全部归结为数据表达形式——0和1。只要有了0和1,加上逻辑关系,就可以构成全部世界。而世界本来就是这样构成的,已经出现的读脑机、脑电波指挥的电脑、智能机器人和人脑插入的芯片等等,都说明大脑的认知方式与世界事物同构。
大数据的出现促使我们认识到,人类的认识和实践,就是一部数据搜索、处理、挖掘和创新的历史。大数据方法揭示了因果关系是常规性的,终极的关系应从事物之间的相关性、同构性中寻找。数据反映的是具有同构关系的两个序列的关系信息,一个对象的运动轨迹,通过另一个序列的载体编码来表达。认识者获得的不是对象本身的绝对映像,而是离开了对象,从对象中抽象出来的、关于对象运动轨迹的数据。从这一角度看,同构关系是大数据的数理哲学基础。
人工智能可能超越人类
依据对象之间数据关系来认识世界,这一方法可靠吗?以往人类在对自己认识能力的反思中,已经多次提出疑议。人类每一次宣告自己是绝对真理的全称判断,如“所有的天鹅都是白的”,总是被一个小小“黑天鹅”单个事件推翻。“黑天鹅”的存在寓意着不可预测的重大稀有事件,它在意料之外,却又改变一切。因此,不能把科学知识看做是对客观世界的终极反映,它只是人们用理性构建的认识对象的模型。
大数据更像是一种连续不断的论证和数据流。这使让人们意识到,知识永远不会被完全确定,永远不会终止。
大数据的出现或许让人工智能超越人类成为可能。在图灵测试中,通过测试的机器人是否真的有自己的思想?反对者认为“智能和思想是两回事”。但是,如果在图灵测试中换上小孩,那么问题变成:对于刚出生的小孩,智能从什么时候开始?实验证明:小孩的自我意识始于大量的条件反射刺激(巴甫洛夫条件反射),仅仅是无数次的重复刺激成为坚定的信念基础,以至于形成信仰,相信这是不证自明的公理。事实上,大数据已经说明:思维的模型与世界的模型的同构关系已经真实地被把握了。
根据大数据的同构关系,我们将重新定义知识:人的知识也是一个有限量。从这个定义出发,人工智能可以超越人类——只要人工智能是动态的、可以发展的,就可以学习并超过人类。具有自我学习能力的机器人可以超过关键的“奇点”,只要通过证实的概率增加,给人工智能一个信仰或公理,人工智能技术将可以超越其制造者——人类本身。
将带来的发展模式革命
知识是不断递增的。摩尔定律揭示了大数据增长的速度。这是一场革命,是一场改变我们的思维、决策方式和发展方式的新的科学技术革命和产业革命,是一场影响世界和人类文明发展的革命。
与以往科技革命和工业革命相比,大数据的冲击力有三方面:
一是以无限增长突破有限增长。传统经济社会发展方式是有限的,因为物资财富和资产是有限的,是会枯竭的。例如现在使用煤,仅供开采160年,使用石油,仅供40年。但是大数据的增长却是源源不断的、递增的、无限的。
二是以效益递增突破效益递减。传统社会发展方式是高成本、低效益的,效益递减的。但是大数据时代的发展方式却是低成本、高效率、快速度的,效益是递增的。
三是和谐共赢发展突破了对立的、矛盾的发展。传统的发展是零和博弈似的、马太效应的:你有我就没有,你多我就少,富者越富穷者越穷。从某种程度上导致了人们互相争吵,世界不得安宁。现在,大数据时代的发展却是和谐的、合作共赢的。因为数据财富和资产可以复制、递增、共享。当然,关键还要看人的素质,因此要发展科教事业,提高人们素质。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21