作者:丁点helper
来源:丁点帮你
生存分析的上一篇文章主要通过一张表格介绍了计算生存率的方法,称作K-M法,也叫乘积极限法,简单来讲就是将生存概率相乘获得生存率。
生存曲线的估计方法(1):先看懂这个表,比如,前面我们讲过:
好比身高的样本均数,抽取的第一拨人计算的平均身高和第二拨人的平均身高是有差异的。
因为它们都是样本统计量,所以会随着样本的变化而变化。同样地,如果我们想象一下,把这些样本统计量放在一起再求平均数和标准差,那这次得到的这个标准差叫做什么呢?
还记得吗?叫标准误。
在学习均数抽样分布的时候,我们也重点谈过的。
因此,类似的,根据样本计算的生存函数,它也是一个样本统计量,它也可以被计算标准误。
理解了这一层,就应该能搞懂上一篇文章中最后一列出现的“生存率标准误”,如下表第(9)列。
这个“生存率标准误”的计算公式稍微有些复杂,我们可以不详细展开。重点是大家要意识到它所代表的含义:
如果单单由一个样本的生存率去代表总体,会存在误差(类比用一个城市的平均身高代表全国的平均身高),如何去衡量这个误差?由此我们就计算了标准误。
因此,如果搞懂了前面讲的样本均数的标准误等概念,这里就直接类比即可,可见基本的统计学理论和知识点需要重点掌握。
之所以要大费周章地搞懂“生存率的标准误”这个概念,是因为在实际应用中,我们可能经常会面临计算生存率95%置信区间的问题。
同样地,原理和均数95%置信区间几乎完全类似。对这个知识点不熟悉的同学可以阅读我们发的这篇文章。
只要搞懂了置信区间的大逻辑,相信对下面这个生存率的95%置信区间计算公式不会陌生:
因此,我们可以得出:手术后辅助化疗的肺癌患者,10个月生存率的95%置信区间为(0.2848,0.8580),或者写成百分数的形式(28.48%,85.80%)。
讲完生存率置信区间的算法,我们再来复习之前介绍过的一个概念——中位生存时间。
如下图,可以发现,当时间 t=11.124时,对应的生存率是0.5。这表示,当生存时间是11.124个月时,生存函数取值为0.5,从而意味着:
上图有一个专业的名字,叫K-M生存曲线(对应前文讲过的K-M乘积极限法):横轴是生存时间,纵轴是生存率。
从图中我们可以看出,K-M生存曲线呈阶梯性,随着生存时间的增加,曲线呈下降趋势,意味着时间越长,仍然存活的人数越少,生存率越低。如果曲线阶梯陡峭,表明下降速度快,往往生存期较短。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21