人工智能与大数据对医疗领域帮助不大
人工智能和大数据是今年最热的话题,在国内投资界和产业界都如火如荼,特别是在AlphaGO横扫围棋界后更是呈现一片欣欣向荣的势态。大数据与人工智能目前在医学类的应用也是层出不穷,尤其是在图像识别、影像诊断上都显示了很好的前景。
但是在比较复杂的系统中,大数据挖掘和人工智能可能会受挫,大数据技术本身不是泡沫,但是利用大数据和人工智能名头的相关产业的泡沫正在袭来……
医药人工智能研究受挫,IBM沃森机器人遭遇冷板凳
沃森是IBM的杰出计算系统,自从参加了2011年的智力节目《危险边缘》,在一场与两名最受瞩目的选手对决中胜出后,就成功博得了世人的瞩目。在2013年10月的新闻发布会中,IBM宣称安德森癌症中心,德克萨斯大学系统之一,正在使用沃森机器人系统用于研究根治癌症。
但是近期,据福布斯的报道指出,IBM与该世界顶尖癌症研究机构的合作关系正趋于破裂。此前安德森癌症中心证实:此项目从去年开始就已经暂停。安德森癌症中心也正在积极寻求其他合作方的竞价,未来这些合作方有可能取代IBM。来自德克萨斯大学审计机构的一份报告指出,安德森癌症中心已经花费了6200万美金用于此项目,但尚未实现目标。审计记录显示项目重点更换了数次,第一次重点研究白血病、然后是另一个、接下来又是肺癌。最后毫无进展。
虽然安德森癌症中心与IBM的沃森机器人确立合作的出发点确实是积极的,但是最终项目却没有完成,而且还花费了巨额资金。与安德森癌症中心合作的结果并不令人满意。即使双方合作破裂是安德森方面的一个错误决策,这仍然从侧面说明了IBM的人工智能和大数据目前在医药领域尚未取得重大建树。
大数据医疗的应用方向有哪些?
目前大数据主要应用于以下五大方向的15个应用:
从以上应用范畴中我们发现,为什么在复杂疾病的数据挖掘中,大数据并没有深入发展呢?
因为复杂疾病是非标类的产品,无论是在学术界还是在临床治疗上都有非常大的争议,有时候是向正有时候是向反,对于一些疾病甚至很多的研究报告会出现截然相反的结果,而且学术争议是一直都存在的,因此复杂疾病是非常难以判断的。
医疗与下围棋大不相同,围棋的下法有一个最优概率的计算,但是在医学中,哪怕是51%的概率你也不能说就一定比49%更好,而且医学中小概率事件发生是很普遍的。
非结构化病历数据的挑战
目前我国各医院系统并不相连,因此没有一个统一规范的临床结构化病历模型标准,不同医院的病历书写也存在很大的差异化,非结构化的数据使得大数据在我国的医疗环境下很难做到高效率的数据挖掘。
还有一个很现实的问题那就是——中国的绝大部分临床病历实际价值非常的小。因为医生的临床工作很忙,所以基层医院的病历写作不规范,而上级三甲医院的病历基本上都靠复制黏贴,因此想要从病历的结构化和自然语言中是很难做到任何有效的分析的。
除此之外,目前中国普遍的临床用药和检查都有很多的问题,临床中的实际治疗是千变万化的,但是你在患者病历中是看不出来的,因为中国的医生很多都是以完成实际工作和不要扣钱为主,因此就会做一些套式的病历,以及靠复制黏贴来随意应付paperwork,患者的细微诊断细节很多时候从病历上根本无法体现,所以每个病历的治疗效果可能都千差万别。
大数据很多是从既有数据中进行挖掘,但是中国的患者离开医院后失访率非常高,这与美国的医疗情况不同,美国的患者离院之后的诊后延续性比较好。数据如果不能持续向前发展,那大数据就会变成死数据,并产生很大的泡沫。但这还不是泡沫的根本!
医疗大数据泡沫的根本在于无法转动商业模式
大数据泡沫的根本在于商业模式无法转动,或者无法转动到比较大的规模就出现了各种各样的问题。产业界都是一轮泡沫向另一轮泡沫不断转移的。在医疗大数据产业中,不管是数据临床诊断还是肿瘤数据分析,目前只有两个比较主要的商业模式:
临床应用通过医院向患者收费,每一个医院和科室相当于一个代理,这样进行层层转移,但是收费并且市场教育成本会非常的高,反之再有地推各种成本情况下,毛利率会很低。
向药企做药物研发、临床观察的数据辅助分析。
但是在国内,原研药的研发实际上的市场份额并不是很高,国内企业对于新药的研发投入并不大,而跨国企业的研发主要在国外总部,所以虽然这一商业模式有向后延续的趋势,但是发展优势并不明显。
同时还有一个很现实的问题,大数据企业可能需要每年花费上亿的成本去做临床数据辅助分析系统,但是药企可能只愿意花费几百万来支付你提供的服务,这就会导致比较严重的入不敷出,而且这不是一个短期的状态而是常态化的。在现阶段,想要让药企大规模的去支付改善药物研发的费用比较难,反而现在单纯做临床观察系统、患者招募的需求更广阔一些。
最后,无论在中国还是美国,医疗大数据产业很难适合创业公司去做,就像很多创新药物只能由礼来、辉瑞等的大型跨国药企来宣布和承受失败……创业公司即使短期内融到巨资来做这个事情,目前也看不到任何规模化收入的可能性。也许2、3 年后情况会有好转,但是资本情况又会有不断的变化,可谓是路漫漫而修远兮……
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21