现在的大数据风控还只是个宝宝
现在搞金融行业,开口闭口不谈大数据,简直就像是出门没穿衣服一样丢人。老猫虽然碍于情面,有时也不免对大数据高谈阔论,不过静下心来,却还是觉得现在的大数据风控有诸多不足之处,套用网络俗语来看,还只是个宝宝。
1、 我们没有经历过一个完整的信贷周期
美国的征信行业从创始至今已经走过了超过100年的时间,涉及到资本市场信用机构有Standard and Poor’s(标准普尔)、Moody’s(穆迪)、Fitch(惠誉),普通企业信用机构有Dun&Bradstreet(邓白氏),个人征信方面则有Experian(益博睿)、Equifax(艾可菲)、Trans Union(全联)。可以看出美国的征信机构业务集中且覆盖市场的方方面面,其中的数据更是长达了几代人的时间,经历过数次遍及全球的金融危机,这样的数据是经得起市场和时间的检验的,个人信用记录涉及到的每个人美国人生活的方方面面。
而中国人民银行的个人信用信息基础数据库建设最早始于1999年,2005年8月底才完成与联网运行,算到2017年,可能其中大部分人连商品房的房贷都没有还完,更不必说小额消费贷款这样最近几年伴随着网购才在中国发展起来的新生事物,不少新近成立的消费金融公司的种子客户都还在第一轮的还款当中。而且个人征信还远未到影响到我们生活的地步,很多人对此不重视也造成了信用记录的缺失。在数据本身都存疑的情况下,与之相匹配的评分标准、贷款额度、逾期率等都没有经过检验,这是目前大数据风控所被人诟病的最主要的方面。
不要忘了中国到目前为止始终处于一个上升的经济周期内,倘若未来处于经济下行阶段,目前积累的数据和模型还是否有效,是一个很大的未知数。
2、 积累的样本离“大”数据还差的很远
我们老说大数据大数据,但对于什么样的数据可以称之为“大”,恐怕很少有人能得出概念。一个经营的很好的P2P平台有着几万到几十万用户的投资数据,而一些搞征信企业拥有百万级的用户数据就可以称自己是“大数据”了,即使是央行,也仅仅拥有3.8亿人的信贷记录。
这样的数据规模,应用到拥有十三亿人国家的市场中,可以说远远的不够。中国的贫富差距之大,地区和地区间发展的极不均衡,让单一的数据模型很难适用于每个消费群体。而且不少企业都把自己积累的消费数据作为企业的“秘密”,生怕竞争对手获取到这些信息,这更加剧了信息之间的不流通,使得数据样本与实际产生偏差,恶意套现的组织也利用这一漏洞,用同样的资料在不同平台之间进行套现。现在许多消费金融公司组建起了生态联盟,在联盟内共享黑名单,就是希望依靠联盟来扩充数据容量以增强数据的准确性。
老猫甚至有一个“狭隘”的观点,我认为只有基本覆盖到每个公民的数据才称得上是“大数据”。在存在一定边界条件控制的情况下,比如春运、集会这样的指向性很强的活动中,有着一定量的数据就可以得出可信的趋势。而在信用贷款中,每个个体都存在着不可控的因素,这些因素的来源是方方面面的,是否仅仅依靠大数据就可以推算出来,我个人是表示存疑的。
3、 人为操作可以让大数据形同虚设
我们看到了美国征信行业的生机勃勃,但经常被我们忽视的是,美国同时拥有着一整套与之匹配的法律体系和监管机制,包括《公平信用报告法》在内共有17部法律,在信息的收集、使用、发布、准确性上有着详尽的规定,支撑着美国整个征信行业的规范性发展。
这些法律,让美国的征信数据是公开公平,真实可信的。而我国关于征信方面主要的法规是2013年1月国务院颁布的《征信管理条例》,单从“条例”一词就可以看出,我国在征信方面还未上升到国家法律的层面。并且我国采用的是政府征信与企业征信的双轨制结构,双方在数据类型、数据库上并不完全互通,这就导致了数据的不一致,存在人为进行篡改的可能性。还有关于个人隐私方面的问题,《征信管理条例》也有许多语焉不详之处,在实践过程中有可能出现个人隐私暴露的问题。
从前段时间电影票房的虚假繁荣,到电商平台上可以说是习以为常的刷单现象。连吃瓜群众都可以看到大数据经常反映不了真实的情况,有问题的数据应用到风控中,还会造成更多的隐患。限于金融自身的周期规律,这些隐患造成的后果不会像电影票房那样立刻显现,但很有可能在将来集中爆发。
不仅是数据本身,如何运用数据也是左右风控的关键因素。在缺乏法律监管的情况下,许多平台人为的降低风控要求,从而增大了风险敞口,造成了有“大数据”而无“风控”的情况,从近段时间大批平台因经营不善纷纷“暴雷”来看,大数据风控的核心还是在于人,只有监管者从严监管,从业者合规经营,大数据风控才能真正“长大成人”。
数据分析咨询请扫描二维码
在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16