京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在的大数据风控还只是个宝宝
现在搞金融行业,开口闭口不谈大数据,简直就像是出门没穿衣服一样丢人。老猫虽然碍于情面,有时也不免对大数据高谈阔论,不过静下心来,却还是觉得现在的大数据风控有诸多不足之处,套用网络俗语来看,还只是个宝宝。
1、 我们没有经历过一个完整的信贷周期
美国的征信行业从创始至今已经走过了超过100年的时间,涉及到资本市场信用机构有Standard and Poor’s(标准普尔)、Moody’s(穆迪)、Fitch(惠誉),普通企业信用机构有Dun&Bradstreet(邓白氏),个人征信方面则有Experian(益博睿)、Equifax(艾可菲)、Trans Union(全联)。可以看出美国的征信机构业务集中且覆盖市场的方方面面,其中的数据更是长达了几代人的时间,经历过数次遍及全球的金融危机,这样的数据是经得起市场和时间的检验的,个人信用记录涉及到的每个人美国人生活的方方面面。
而中国人民银行的个人信用信息基础数据库建设最早始于1999年,2005年8月底才完成与联网运行,算到2017年,可能其中大部分人连商品房的房贷都没有还完,更不必说小额消费贷款这样最近几年伴随着网购才在中国发展起来的新生事物,不少新近成立的消费金融公司的种子客户都还在第一轮的还款当中。而且个人征信还远未到影响到我们生活的地步,很多人对此不重视也造成了信用记录的缺失。在数据本身都存疑的情况下,与之相匹配的评分标准、贷款额度、逾期率等都没有经过检验,这是目前大数据风控所被人诟病的最主要的方面。
不要忘了中国到目前为止始终处于一个上升的经济周期内,倘若未来处于经济下行阶段,目前积累的数据和模型还是否有效,是一个很大的未知数。
2、 积累的样本离“大”数据还差的很远
我们老说大数据大数据,但对于什么样的数据可以称之为“大”,恐怕很少有人能得出概念。一个经营的很好的P2P平台有着几万到几十万用户的投资数据,而一些搞征信企业拥有百万级的用户数据就可以称自己是“大数据”了,即使是央行,也仅仅拥有3.8亿人的信贷记录。
这样的数据规模,应用到拥有十三亿人国家的市场中,可以说远远的不够。中国的贫富差距之大,地区和地区间发展的极不均衡,让单一的数据模型很难适用于每个消费群体。而且不少企业都把自己积累的消费数据作为企业的“秘密”,生怕竞争对手获取到这些信息,这更加剧了信息之间的不流通,使得数据样本与实际产生偏差,恶意套现的组织也利用这一漏洞,用同样的资料在不同平台之间进行套现。现在许多消费金融公司组建起了生态联盟,在联盟内共享黑名单,就是希望依靠联盟来扩充数据容量以增强数据的准确性。
老猫甚至有一个“狭隘”的观点,我认为只有基本覆盖到每个公民的数据才称得上是“大数据”。在存在一定边界条件控制的情况下,比如春运、集会这样的指向性很强的活动中,有着一定量的数据就可以得出可信的趋势。而在信用贷款中,每个个体都存在着不可控的因素,这些因素的来源是方方面面的,是否仅仅依靠大数据就可以推算出来,我个人是表示存疑的。
3、 人为操作可以让大数据形同虚设
我们看到了美国征信行业的生机勃勃,但经常被我们忽视的是,美国同时拥有着一整套与之匹配的法律体系和监管机制,包括《公平信用报告法》在内共有17部法律,在信息的收集、使用、发布、准确性上有着详尽的规定,支撑着美国整个征信行业的规范性发展。
这些法律,让美国的征信数据是公开公平,真实可信的。而我国关于征信方面主要的法规是2013年1月国务院颁布的《征信管理条例》,单从“条例”一词就可以看出,我国在征信方面还未上升到国家法律的层面。并且我国采用的是政府征信与企业征信的双轨制结构,双方在数据类型、数据库上并不完全互通,这就导致了数据的不一致,存在人为进行篡改的可能性。还有关于个人隐私方面的问题,《征信管理条例》也有许多语焉不详之处,在实践过程中有可能出现个人隐私暴露的问题。
从前段时间电影票房的虚假繁荣,到电商平台上可以说是习以为常的刷单现象。连吃瓜群众都可以看到大数据经常反映不了真实的情况,有问题的数据应用到风控中,还会造成更多的隐患。限于金融自身的周期规律,这些隐患造成的后果不会像电影票房那样立刻显现,但很有可能在将来集中爆发。
不仅是数据本身,如何运用数据也是左右风控的关键因素。在缺乏法律监管的情况下,许多平台人为的降低风控要求,从而增大了风险敞口,造成了有“大数据”而无“风控”的情况,从近段时间大批平台因经营不善纷纷“暴雷”来看,大数据风控的核心还是在于人,只有监管者从严监管,从业者合规经营,大数据风控才能真正“长大成人”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01