现在的大数据风控还只是个宝宝
现在搞金融行业,开口闭口不谈大数据,简直就像是出门没穿衣服一样丢人。老猫虽然碍于情面,有时也不免对大数据高谈阔论,不过静下心来,却还是觉得现在的大数据风控有诸多不足之处,套用网络俗语来看,还只是个宝宝。
1、 我们没有经历过一个完整的信贷周期
美国的征信行业从创始至今已经走过了超过100年的时间,涉及到资本市场信用机构有Standard and Poor’s(标准普尔)、Moody’s(穆迪)、Fitch(惠誉),普通企业信用机构有Dun&Bradstreet(邓白氏),个人征信方面则有Experian(益博睿)、Equifax(艾可菲)、Trans Union(全联)。可以看出美国的征信机构业务集中且覆盖市场的方方面面,其中的数据更是长达了几代人的时间,经历过数次遍及全球的金融危机,这样的数据是经得起市场和时间的检验的,个人信用记录涉及到的每个人美国人生活的方方面面。
而中国人民银行的个人信用信息基础数据库建设最早始于1999年,2005年8月底才完成与联网运行,算到2017年,可能其中大部分人连商品房的房贷都没有还完,更不必说小额消费贷款这样最近几年伴随着网购才在中国发展起来的新生事物,不少新近成立的消费金融公司的种子客户都还在第一轮的还款当中。而且个人征信还远未到影响到我们生活的地步,很多人对此不重视也造成了信用记录的缺失。在数据本身都存疑的情况下,与之相匹配的评分标准、贷款额度、逾期率等都没有经过检验,这是目前大数据风控所被人诟病的最主要的方面。
不要忘了中国到目前为止始终处于一个上升的经济周期内,倘若未来处于经济下行阶段,目前积累的数据和模型还是否有效,是一个很大的未知数。
2、 积累的样本离“大”数据还差的很远
我们老说大数据大数据,但对于什么样的数据可以称之为“大”,恐怕很少有人能得出概念。一个经营的很好的P2P平台有着几万到几十万用户的投资数据,而一些搞征信企业拥有百万级的用户数据就可以称自己是“大数据”了,即使是央行,也仅仅拥有3.8亿人的信贷记录。
这样的数据规模,应用到拥有十三亿人国家的市场中,可以说远远的不够。中国的贫富差距之大,地区和地区间发展的极不均衡,让单一的数据模型很难适用于每个消费群体。而且不少企业都把自己积累的消费数据作为企业的“秘密”,生怕竞争对手获取到这些信息,这更加剧了信息之间的不流通,使得数据样本与实际产生偏差,恶意套现的组织也利用这一漏洞,用同样的资料在不同平台之间进行套现。现在许多消费金融公司组建起了生态联盟,在联盟内共享黑名单,就是希望依靠联盟来扩充数据容量以增强数据的准确性。
老猫甚至有一个“狭隘”的观点,我认为只有基本覆盖到每个公民的数据才称得上是“大数据”。在存在一定边界条件控制的情况下,比如春运、集会这样的指向性很强的活动中,有着一定量的数据就可以得出可信的趋势。而在信用贷款中,每个个体都存在着不可控的因素,这些因素的来源是方方面面的,是否仅仅依靠大数据就可以推算出来,我个人是表示存疑的。
3、 人为操作可以让大数据形同虚设
我们看到了美国征信行业的生机勃勃,但经常被我们忽视的是,美国同时拥有着一整套与之匹配的法律体系和监管机制,包括《公平信用报告法》在内共有17部法律,在信息的收集、使用、发布、准确性上有着详尽的规定,支撑着美国整个征信行业的规范性发展。
这些法律,让美国的征信数据是公开公平,真实可信的。而我国关于征信方面主要的法规是2013年1月国务院颁布的《征信管理条例》,单从“条例”一词就可以看出,我国在征信方面还未上升到国家法律的层面。并且我国采用的是政府征信与企业征信的双轨制结构,双方在数据类型、数据库上并不完全互通,这就导致了数据的不一致,存在人为进行篡改的可能性。还有关于个人隐私方面的问题,《征信管理条例》也有许多语焉不详之处,在实践过程中有可能出现个人隐私暴露的问题。
从前段时间电影票房的虚假繁荣,到电商平台上可以说是习以为常的刷单现象。连吃瓜群众都可以看到大数据经常反映不了真实的情况,有问题的数据应用到风控中,还会造成更多的隐患。限于金融自身的周期规律,这些隐患造成的后果不会像电影票房那样立刻显现,但很有可能在将来集中爆发。
不仅是数据本身,如何运用数据也是左右风控的关键因素。在缺乏法律监管的情况下,许多平台人为的降低风控要求,从而增大了风险敞口,造成了有“大数据”而无“风控”的情况,从近段时间大批平台因经营不善纷纷“暴雷”来看,大数据风控的核心还是在于人,只有监管者从严监管,从业者合规经营,大数据风控才能真正“长大成人”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07