python脚本实现分析dns日志并对受访域名排行
前段时间有个需求是要求查一段时间的dns上的域名访问次数排行(top100),没办法,只好慢慢的去解析dns日志呗,正好学习了python,拿来练练手。
1.原始数据分析:
首先看下原始数据文件,即dns日志内容,下面是抽取的几条有代表性的日志,2×8.2×1.2x.1×5 这种中间的x是相应的数字被我抹去了。
13-08-30 03:11:34,229 INFO : queries: – |1×3.2×8.2x.2×8|p19.qhimg.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |8061|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.x.9x|shu.taobao.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |59034|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.2×7.1×2|cncjn.phn.live.baofeng.net|default|2×8.2×1.2x.17x;|default;|A|success|+|—w— qr aa rd ra |3004|
可以看出中间的日志采用的是| 分割的,shu.taobao.com 即为我们想要的数据域名,至于域名访问次数统计,则每个域名的一条记录算一次访问。由此我们可以确定一下两点:
a)采用| 作为分割符
b)第二个字段domain为目标数据,我们用作键值,即字典的key
c)domain[key]存储相应域名的访问次数
2.脚本构思:
a)我们的dns日志都是隔一段时间自动切割、压缩为gz文件,因此首先必须采用gzip.open去打开gz文件,这里需要导入gz库。
b)要求查找的是一段时间的域名排行,所以必须有得过滤一段时间,这里我采用了正则的方式去过滤,so导入re正则库。
c)排序,必须对结果进行排序,然后输出topXX的结果,由于是采用字典保存的,而字典是乱想的,所以必须有合适的办法去排序,字典的iteritems正好适用。
3.脚本编写:
明白了大致要点,脚本写起来就很easy了。
代码如下:
稍微说下脚本内容,queries.log.CMN-CQ.20130830031330.gz 为具体的一个目标文件,脚本主要是采用字典存储,以domain字段作为key,domain[key]存储访问次数。
稍后调用字典的iteritems 方法生产迭代器进行排序,最后输入top100的域名。
最后的raw_input(“enter a word to finish”) 是因为我在win7下测试的,默认执行完就一闪而过了,加入这行纯碎是为了观察结果,linux下可以删去。
这里稍微别扭的是时间的过滤采用的是正则去过滤的,所以要求输入必须是正则的方式,这点麻烦。
3.执行
说了大半天了,还是先跑下看看效果吧。
可以看出正常输出了top20的域名。
4.总结:
大致实现了相应的要求,只是很多的文件处理的不大好。例如采用正规去过滤时间段,在数据量很大的情况下会对性能有影响。同时感谢同事,最后的字典的排序方法我是抄他的,感谢个~
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21