Bi这里是的意思就是Binary,二进制的意思,所以有时候叫这个算法为二进Kmeans算法。为什么我们需要用BiKmeans呢?就是为了解决初始化k个随机的质心点时其中一个或者多个点由于位置太极端而导致迭代的过程中消失的 ...
2020-05-21SVC,英文全称support vector machine,中文为支持向量机,是一种分类算法,但是也可以做回归,根据输入的数据不同可做不同的模型(若输入标签为连续值则做回归,若输入标签为分类值则用SVC()做分类) ...
2020-05-20方法一: K平均算法(K-means聚类分析) 在下面的误差平方和图中,拐点(bend or elbow)的位置对应的x轴即k-means聚类给出的合适的类的个数。 > n = 100 > g=6 > set.seed(g) > d <- data.frame(x = unlist(lap ...
2020-05-20【磐创AI导读】:评估一个模型是建立一个有效的机器学习模型的核心部分,本文为大家介绍了一些机器学习模型评估指标,希望对大家有所帮助。 评估一个模型是建立一个有效的机器学习模型的核心部分 ...
2020-05-20最大后验估计(maximum a posteriori probability estimate, 简称MAP),是贝叶斯学派的法宝之一。 与统计学派不同,贝叶斯学派认为在做估计之前,人们对要估计的实物先有一个经验性的判断,然后根据数据调整对这 ...
2020-05-20特征向量(eigenvector),矩阵理论上一个非常重要的概念,被广泛的应用于各个领域。 数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变,该向量在此变换下缩放的比例称为其特征值 ...
2020-05-201.AI人工智能 Artificial Intelligence 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智 ...
2020-05-20Z-Score,又称为再Z分数、标准分数,一个数与平均数的差再除以标准差的过程。 Z-Score能够衡量出一个分数距离平均数的相对标准距离,如果我们把每一个分数都转换成z分数,那么每一个z分数会以标准差为单位表示 ...
2020-05-20召回率(Recall),一般指查全率,指从数据库内检出的相关的信息量与总量的比率,是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标之一。 在实际应用中,多数人更喜欢称召回率为召回率,因为更能体 ...
2020-05-20先验概率和后验概率是与贝叶斯概率更新有关的两个概念百。假如某一不确定事件发生的主观概率 因为某个新情况的出现 而发生了改变,那么改变前的那个概率就被叫做先验概率,改变后的概率就叫后验概率。 先验概率是指 ...
2020-05-19K-s是模型验证的最常用的“武器”之一,而K-s曲线指洛伦兹曲线之间的差值。 K-S曲线主要是验证模型的区分能力,通常是在模型预测全体样本的信用评分后,将全体样本按违约与非违约分为两部分,然后用K-S统计量来检验 ...
2020-05-19在判断是有监督学习还是在无监督学习上,我们可以具体是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。 什么是学习(learning)? 一个成语 ...
2020-05-19有部分同学,在学习初期,会认为下采样和池化是指同样的事情,只是叫法不同而已,其实这是一种错误的认知。 下采样(subsampled),或称为降采样(downsampled),指缩小图像。其主要目是使得图像符合显示区域的 ...
2020-05-19FP-Growth使用了一种特殊的分治策略,将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。 这种关联分析算法的概念由韩嘉炜等人在2000年提出,在FP-Growth算法中使用了一种称为频繁模 ...
2020-05-19feature importance指特征重要性,在特征选择的许多方法中,我们可以使用随机森林模型中的特征重要属性来筛选特征,并得到其与分类的相关性。 由于随机森林存在的固有随机性,该模型可能每次给予特征不同的重要性 ...
2020-05-19人工智能涉及到很多的技术,大家都知道人工智能离不开机器学习,不过比较少人知道人工智能也是离不开模式识别的。什么是模式识别呢?简单点说,模式识别就是对各种情况的识别。而在人工智能中,模式识别是一 ...
2020-05-19机器学习算法会涉及到大量的数学基础内容,数学好的童靴们,你们的优势来了。在机器学习中涉及到了三个数学工具,分别是线性代数、概率统计(概率估计)、最优化理论。 今天,我们来讲概率统计,在机器学习中会涉及 ...
2020-05-19在统计学中,连续型变量和离散型变量极为常见,今天我们就来看看它们的区别是什么? 变量值的变动幅度不同。 对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如居民家庭按儿童数或 ...
2020-05-18一般来说,Rcall指令属于ROM空间的相对寻址范畴,call属于ROM空间的直接寻址范畴。 CALL和RCALL的区别: 1、指令长度不同; 2、指令执行所需机器周期不同; 3、寻址范围不同。 ——其他知识点普及: R ...
2020-05-18本文讲述了数据分析师应当了解的五个统计基本概念:统计特征、概率分布、降维、过采样/欠采样、贝叶斯统计方法。 利用统计学,我们可以更深入、更细致地观察数据是如何进行精确组织的,并且基于这种组织结构, ...
2020-05-18“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31